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ABSTRACT
 

 

i 

Abstract 

This project is focusing on “Renewable Energy Balancing for residential Homes”. 
Cost for electric energy is continuously rising. Therefore a positive trend towards 
self-consumption of decentralized-produced energy can be observed. Renewable 
sources like photovoltaic or wind are occurring in rather fluctuating manners. To 
increase the self-consumption storage solutions are needed. Batteries meet the 
specifications a storage system needs for a residential home. Batteries are small 
and powerful.  

 

The scope of this project is to find out: 

“How much battery capacity is needed for a residential home and how much self-
consumption can be achieved with it?” 

 

A MS-Excel-based program-tool has been developed to guide the design process. 
The main requirement for this tool was to be easy-to-use. A particularity is the user-
definable load and generation profiles. Self-consumption can be increased to en-
couraging high levels, whenever the renewable energy generation is both frequent 
and sufficient. 
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Kurzfassung 

Dieses Projekt fokussiert sich auf das „Regeneratives Energien-Management für 

Wohnhäuser“. Kosten für elektrische Energie steigen stetig. Aus diesem Grund gibt 

es einen positiven Trend zum Eigenverbrauch dezentral erzeugter Energie. Das 

Auftreten von regenerativer Energie aus Photovoltaik und Wind sind von starken 

Fluktuationen unterlaufen. Von Nöten ist eine Speicher Lösung, um den 

Eigenverbrauch zu steigern. Batterien erfüllen als Speicher die Anforderungen von 

einem Wohnhaus, da diese klein und leistungsstark sind. 

 

Im Rahmen des Projektes ist zu ermitteln: 

„Welche Dimensionierung der Batteriekapazität ist nötig für ein Wohnhaus und wie 

viel Eigenverbrauch kann damit erreicht werden?“ 

 

Ein Programm wurde entwickelt zur Überprüfung der Auslegung. Die Anforderungen 

wurden auf eine einfache und leicht handhabbare Software gelegt. Die Berechnung 

erfolgt als Besonderheit über eigens anpassbare Last- und Generator-Profile. 

Eigenverbrauch kann zu einem zufriedenstellenden Maße erhöht werden. Die 

Bedingung dafür sind fortlaufende und hinreichende Energieerträge von der 

Generator Seite. 
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1 Introduction 

Seven billion people on earth have a huge demand for energy. Per annum mankind 
generates 19.000 TWh of electric energy (1). We need electric energy in industrial 
facilities as well as private households. Whether we use it to operate kitchen utilities 
or computers, it is one of the most convenient forms of energy. Today, most of this 
electrical energy is produced by the conversion of fossil fuels via thermodynamic 
processes. However, since the supply of these fuels is limited, alternatives must be 
incorporated in any future energy concept. To allow for these alternative energy 
forms to have maximum impact, in terms of replacing fossil fuels and preservation of 
the environment, mechanisms to balance grid fluctuations are needed. Since alter-
native sources are not subject to human demand but are rather function of for ex-
ample wind or solar irradiance, some sort of storage capacity for electric energy has 
to be installed. 

Germany’s government passed a new energy policy in 2010. The objectives are 
efficiency, supply security and environmental compatibility (2). The policy was ex-
ceeding the operating times of nuclear power plants. In March 2011 a change of 
events took place: Fukushima. Germany’s eight oldest nuclear power plants were 
shut down immediately. The nine remaining plants will be shut down step-by-step 
until 2022. Since subsidies for PV were cut in the beginning of the year 2012 and 
while energy prices are rising, the self-consumption of electric energy as well as its 
storage is discussed more frequently by politicians and engineers (3). In 2050 the 
following parameters shall be reduced (versus year: 1990) (4): 

• Greenhouse gas emissions of minimum by 80% 

• Renewable energy part by 60 % of primary energy demand and 80 % of 
gross electric energy consumption 

• Primary energy to 50 % (compared to 2008) 
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1.2 Methodology 

The project followed the KISS approach (“Keep it short and simple”). Microsoft Excel 
was chosen as program development platform because it is a widespread program 
all over the world. The language VBA (Visual Basics for Applications) is an easy 
programming language which can be learned in short time to execute function. 

At first most common electric generators and storage units were investigated. For 
residential homes like single family households (SFH) the range of generators and 
storage units were limited by state of the art technologies and volume specifications. 
In the next step information for environmental constraints was looked into deeply by 
research. 

The program development than began with determination of the constraints. The 
battery algorithm was designed and constantly improved. For further improvement 
the battery algorithm can be edited and selected in the program. Features and more 
functions were continuously applied to the program during the development. 

In the beginning of this project work only a PV-Battery systems were considered to 
power the SFH. Other generators and loads were added later on. For validation of 
the self-sustain quote the results were compared to similar target objects and simu-
lations. Error calculation bandwidth is calculated by uniform Monte Carlo simulation 
and by a robustness analysis. 

A five percentage error has to be applied for the whole simulation in advance (8). 
Calculating by using 15 minute intervals instead of one minute based values creates 
this error. The 15 minute interval resolution has been chosen to handle the data as 
excel files and bring calculation time down. 
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2 Generators for residential Homes 

2.1 General Electric Generators 

Generators for residential homes have to fulfil many criteria such as economical 
reliability, low noise-emissions, certain volumetric dimensions and - for thermal pro-
cesses – the usability of their thermal energy. 

Electric generators supply an electric current to a power grid or a stand-alone off-
grid system. Most generators are mechanical motors driven via rotation. The rotation 
is engendered via turbines, which are put between a high incoming pressure and a 
low output pressure. Alternatively other thermodynamic engines are applied. High 
pressure is mostly engendered by burning substances containing carbon dioxide 
and hydrogen, while low pressure is equivalent to the ambient pressure of the loca-
tion at site. Some renewable energy sources do not need motors or thermodynamic 
processes. Renewable sources feature continuous availability and low carbon diox-
ide emissions. For a list of common renewable energy generators used in residential 
see Table 2-1. 

Table 2-1: Renewable energy forms and common generators (9) 

Renewable Energy Forms Common Generators 

(1) Solar Photovoltaic Module (PV) 

(2) Wind Wind Turbine (HAWT) 

(3) Biofuels Combined Heat and Power (CHP) 

For comparison of different electric energy sources the carbon dioxide footprint of 
the total eco-balance can be viewed in Table 2-2. The eco-balance comprehends 
data over generator lifetime, maintenance, manufacturing and disposal respectively 
recycling efforts (9). The negative carbon dioxide emissions for biogas CHP are cal-
culated of neutral biogas emissions by comparison to heating-oil. Biogas and wind 
have the lowest impact. Photovoltaic depends on location site. In Spain and at lati-
tudes from -45° to +45° irradiance is sufficient with an annual solar energy input of 
1500 kWh/m² to more than 2500 kWh/m² (see chapter 2.2 Solar Powered Electric  ). 
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Table 2-2: Specific total carbon dioxide footprint per kilo-watt-hour (kWh) of different 
Technologies (9) 

Technology Form CO2 Equivalents 
in [g/kWhel] 

Nuclear Power Plant 32 

Natural Gas CHP 49 

Natural Gas (Gas and Steam + 
CHP) 148 

Biogas CHP - 409 

Wind 24 

Hydrogen (general) 40 

PV (Spain) 27 

PV (multi-crystalline) 101 

2.2 Solar Powered Electric Generators 

Solar energy is the most important energy source of all. The outer space surface of 

earth atmosphere is hit by an average power of E0 = 1367	 ୛୫². E0 is called the solar 

constant which describes the average power per square meter. The entire earth 
projected surface is a circle-area of 127.7*1012 square meters which is described 
by Equation 2-1. The projected surface is 12.5 times larger than Europe and nearly 
360 times as Germany. ܣ௦௨௡ = (݀ா௔௥௧௛2 )ଶ × ߨ = (12,750,000	݉2 )ଶ × ߨ = 127.7	 × 10ଵଶ	݉ଶ		
Equation 2-1: Projected circle-area representing earth atmosphere surface which is di-

rectly hit by the sun 

The entire power input from the sun to earth is given by the multiplication of earth’s 
projected surface by the solar constant E0. The power summarises to 174.5 Peta-
watt (see Equation 2-2). 

௦ܲ௨௡ = ܣ × ଴ܧ = 127.7 × 10ଵଶ	݉ଶ 	× 1367 ܹ݉ଶ = 174.5	 × 10ଵହ	ܹ 

Equation 2-2: Average solar power hitting earth 

Every hour the earth receives 1.22 times more solar irradiance energy than human 
demand on primary energy for a whole year. (10) (174.5	ܹܲ	 × 1	ℎ	 ÷ 143.5	ܹܲℎ	 =	1.22) The energy input from sun to earth’s atmosphere for a whole year sums up to 
around 10,660 times the energy of human demand. Human demand can be satisfied 
by using 0.01 % of solar energy. The sun sends this energy in form of electromag-
netic waves carrying photons. Photons cause different environmental effects which 
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charges are separated by the electric field within the semi-conductor. If the semi-
conductor is connected to an external power circuit; an auxiliary consumer can be 
powered (see Figure 2-3). 

Shown is a photovoltaic cell with positive (p+) and negative (n+) doped material 
connected by front and back metal contacts (grey). The + symbol indicates high 
doping zones. In this particular case only two layers are used. 

The sun sends out light-beams containing photons. Photons with the specific energy 
create a pair of an electron and ‘hole’ in the intrinsic layer. The intrinsic layer con-
tains an electric field separating the electron and ‘hole’. The resistance R is con-
nected to the PV cell. The electron passes through the wires and load. At that point 
the electron releases its energy. A sunbeam hitting a front contact finger is reflected 
or if the material absorbs the photon the energy is emitted as heat and is lost. 

The electric field in the semi-conductor is within the intrinsic zone. The doping of the 
semi-conductive material leads to the emergence of the intrinsic zone within the 
photovoltaic cell. Silicone for example is interspersed with impurity atoms. Silicone 
has four external electrons. The silicone is doped on the bottom side with boron that 
has three external electrons leading to a p-doped layer (‘holes’ in mesh). The front 
side of the solar cell is doped with phosphorus which has five external electrons 
leading to an n-doped layer (mesh with more electrons). In case a plus sign (+) is 
put to the n or p on an exposition the layer is heavily doped, a minus sign (-) indi-
cates a layer of light doping. The creation of an electron and “hole” only occurs if the 
energy level of the photon is higher than the band gap of the specified semi-
conductor material. The band gap is the energy gap between the valence band and 
the conduction band. In the valence band the electron is bound to the atom, while in 
the conduction band the electron is free to move. Also the retention time in the in-
trinsic zone of the semi-conductor has to be short. If it takes the electron or “hole” 
too much time to leave the intrinsic zone, the possibility of recombination increases. 
Recombination is the destruction of one electron and “hole”. For example, holes 
move more slowly inside the material than electrons because they are skipping from 
one atom to another. If one electron is fast enough and hit the ‘hole’ they recombine 
and the energy is lost entirely to heat. Energy is also lost by self-shading of the 
module front contactors. 
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3 Storage Types and Active Loads 

3.1 General Storages 

An overview on electrical storages in general and a more specific look into chemical 
batteries and fuels will be given. For residential homes there is a need for seminal 
and promising technologies with high efficiency and affordability. Storages are sys-
tems which allow charging electric energy into a kind of bucket and discharging it 
again as needed. The electric energy flow is transferred to another energy form, like 
potential, kinetic, chemical, static electrical or magnetic fields or warmth energy. 
Each conversion is associated with energy losses. An overview of several different 
storage types and their capacities is shown in Table 3-4. 

Table 3-4: Energy Storages Overview 

General 
Energy 
Form 

Energy 
Storage 

Capacity
Energy
Density

Efficiency Costs Notes 

Potential 
and Kinetic 

Hydraulic 
Hydro Ener-
gy Storage 

Weeks Medium 75-85% Low Eduard Heindl 
(21) 

Hydroelectric 
water Weeks Low 75-85% Low Flooded Area 

enormous 

Chemical 
Electrolysis Weeks High ~45% Medium

Diffusion prob-
lems within stor-
age applications 

Methanation Months High ~35% Medium Usage of exist-
ing Pipelines 

Electro 
Chemical 

Lead-Acid / 
NiMH / Li-Ion 
Batteries 
(solid) 

Days High 70-90% High Expensive 
(2012) 

Redox Flow 
battery  
(fluid vana-
dium) 

Days High 70-90% High Expensive 
(2012) 

Kinetic 
Pressurised 
and Rota-
tional 

Compressed  

Gas (Air) 
Hours Medium 50-75% High 

Economic with  

salt caverns 

Flywheel Minute 
Reserves Medium 95% High High cycle-

stability 
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General 
Energy 
Form 

Energy 
Storage 

Capacity
Energy
Density

Efficiency Costs Notes 

Electric or 
Magnetic 

Capacitors Seconds Low 99% High 
Very high cy-
clestability and 
cost 

Super Con-
ductive Coils Seconds Low 99% High Cooling re-

quirements 

green – optimal, yellow – acceptable, red – unacceptable 

Chemical Storages 

During the project only chemical storages are considered for the conversion of elec-
tric energy. Chemical storages feature high energy density. All other storages are 
unlikely to even fit in a residential home due to volumetric reasons. There are two 
opportunities to store electric energy in chemical boundaries: 

• Batteries 

• Fuel 

3.2 Batteries in General 

Batteries are galvanic elements which can be subdivided in primary and secondary 
elements. Primary elements are not-rechargeable and some examples are shown in 
Figure 3-14. On top a battery is shown with a spill, the coin shaped one is lithium 
based and at the left bottom corner with to connections on one side is a 9V block 
battery (6 cells series). Secondary batteries are accumulators and rechargeable 
Figure 3-15. The LR06 or also AA accumulators are from Sanyo (line called 
eneloop; nickel metal hydride) and the flat mobile phone lithium accumulator manu-
factured by Polarcell has a capacity of 1600 mAh (lithium-ions). In the following bat-
teries are confined to be accumulators. 
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Lead-Acid 

Lead batteries are world-wide the most applied battery form. Almost every fossil fuel 
powered vehicle is started with a lead battery. Nominal Voltage per cell is two volt. 
Energy density is quiet low with 25 - 40 Wh/kg. Lifetime is achieving 750 cycles. In 
Equation 3-3 the chemical equation for a lead battery is given. The lead-anode is 
oxidized; the lead-dioxide-cathode is reduced. The electrode materials are in solu-
tion of sulphuric acid (H2SO4). PbOଶ + Pb + 2	HଶSOସ 		↔ 2	PbSOସ +  ଶOܪ	2

Equation 3-3:  Lead Acid Battery Chemical Equation: Discharging reaction left to right 
side; charging reaction right to left side 

Nickel Metal Hydride (NiMH) 

Nickel metal hydride has a great advantage over the predecessor technology with 
nickel cadmium. It is more environmental friendly and contains no toxic cadmium. 
The nominal voltage is 1.2 V. For quick discharge application with high currents 
nickel cadmium batteries are more suitable. Common forms of application are 
standard LR6 batteries for low discharge rate electronics and mild to full hybrid cars. 
The chemical reaction is shown in Equation 3-4. Electro potentials are -0.83 V for 
the metal and +0.49 V for nickel. Nickel Metal Hydride has a life time over 1,000 
cycles. ܱܰ݅(ܱܪ) ܪܯ+ ↔ ଶ(ܪܱ)݅ܰ 	ܯ+
Equation 3-4: Chemical equation nickel metal hydride battery: Discharging reaction left to 

right side; charging reaction right to left side; M stands for metal 

Lithium-Ion 

Lithium-Ion is a whole group of different battery types with different voltages. Lithi-
um-ions are the ions which migrate from the one electrode to the other. One com-
mon electrode type is a graphite mesh; the other is a lithium-metal with additives. 
The voltages diverse between 3.3 and 4.2 V Lithium-ion battery lifetime is over 
2,000 cycles. The biggest disadvantage for Li-Ion batteries is todays prise. The 
chemical reaction of a lithium battery with a cobalt-oxide cathode is shown in Equa-
tion 3-5 (25). ݅ܮ௑ܥ଺ ଶܱ݋ܥଵି௫݅ܮ	+	 	⇆ ܥ6 +  ଶܱ݋ܥ݅ܮ

Equation 3-5: Chemical equation of a lithium battery with cobalt-oxide-cathode  
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3.2.2 Lifetime Constraints 

Lifetime is defined over the capacity loss of the battery. After a certain usage time 
and cycling, the battery losses are 20 % in capacity and in some cases also other 
abilities are reduced (e.g. high current stability). Lifetime for modern batteries should 
be 10 to 20 years under normal cycling. The lifetime has many dependencies. In the 
following cycling, temperature, storing, voltage and current as well as volumetric 
work are looked at in more depth (26). 

Cycling 

Cycling tests are progressed with a limited Depth of Discharge (DoD). Also battery 
stress may be optimized by charging. In Figure 3-18 a constructed graph for a lead 
acid battery is shown illustrating the cycling times over the discharge depth. This 
distribution is similar for many battery types. The energy throughput is higher when 
cycling with lower discharge depths. In terms of micro cycling, DoD is in single digit 
percentage range, the energy throughput is much higher. 

 

Figure 3-18: DoD versus Cycling Lifetime: In case of micro cycles the energy throughput 
can be increased significantly (26) 

Temperature 

Generally said temperature influences the battery significantly. The higher the tem-
perature, the energy supply ability of the battery and capacity loss is increased. 
Concerning lifetime high temperature means a reduced lifetime (see Figure 3-19). 
Lifetime over battery temperature: Higher temperature equates to shorter lifetime 
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expectation. Red line shows battery operation at 35°C, green line 25°C and the blue 
line 15°C operation. During operation with 35 degrees Celsius the battery can store 
up to 20% more energy during the first 10 years compared to 15 degrees Celsius. At 
15°C the battery lifetime is 35 years to still hit 80% capacity. The minimum tempera-
ture is limited by the electrolyte (e.g. electrolyte freeze point) and requirements on 
minimum capacity and power output (26) 

 

Figure 3-19: Lifetime of a lead battery over temperature: Higher temperature equates to 
shorter lifetime expectation. (26) 

Storing 

If batteries need to be stored the self-discharge has to be taken into account. The 
battery should not be stored in critical conditions. A low self-discharge rate is good 
for storage conditions. If batteries have a high self-discharge rate they should be 
charged regularly to prevent deep discharge which not only might cause significant 
capacity losses, but can even lead to the destruction of the battery. For storing a 
battery an ideal place in a house is the basement. The temperature is nearly con-
stant between 7 and 25 degrees Celsius. The capacity is limited but the lifetime is 
increased by the adequate temperature. 

Voltage Limitations 

Voltage influences the maximum reachable capacity. During cycling the battery high 
voltage means high stress to a battery. More electrons are separated from the cath-
ode to the anode. For example a lithium battery charged with an end charging volt-
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200 cycles instead of 350 cycles (see Figure 3-20). Charging the battery with a high 
voltage increases the stored energy. Number of cycles is diminished significantly. 

 

Figure 3-20: Capacity losses by different charging voltages over number of cycles (26) 

Current Limitations 

High currents determine higher losses in the battery. The inner resistance rises with 
temperature. Temperature is risen by higher discharge and charge currents. Also 
the cultivation of dendrites will be raised. Dendrites are electrode material which will 
permeate the electrolyte material and may lead to a considerably reduced insolation 
characteristic of the electrolyte. The cluster will spread even faster and quicker when 
they are created. The capacity loss over cycling time at different charge and dis-
charge currents is shown in Figure 3-21. Charging the battery with high currents 
increases the inner resistance and the thermal losses. 

 

Figure 3-21:  Influence of different charge and discharge currents over cycle stability. (26) 
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Volumetric Changes 

Another effect is volumetric changes by charging and discharging. For a lithium-ion 
battery with a graphite and lithium-cobalt-dioxide electrode the battery expands me-
chanically by around 10 %. To do full cycling (discharge completely -> minimum 
SOC) the battery is extremely stressed while the volume is changing. Lithium-metal-
phosphor-quad-oxide electrodes have the advantage that they shrink in the same 
ratio as the graphite electrode expands its volume and vice versa. The total expan-
sion of the battery is smaller one percent. The lifetime for that reason is higher. 
Since the volume changes due to temperature, the packaging has to implement 
many criteria. 

3.2.3 Packaging 

Due to the volumetric changes (chapter 3.2.2) and requirements on the usage case, 
the packaging has to be well designed. For EVs the battery has to be packed in a 
robust box which must be conditioned. For residential homes the battery should fit 
through standard doors, should be separated in packages that one or two persons 
can carry and feature high operator protection guidelines. It must follow the changes 
of the inner material without producing leaks or damaging the package and has to 
withstand typical environmental conditions as well as accidents. Regularly an accu-
mulator should be conditioned to increase the life time of the batteries. 

3.2.4 Discharging and Charging 

Discharging 

Discharging the battery has certain criteria. The maximum depth of discharge (DoD) 
value shall not be under-run. The state of charge (SoC) in this case is at its mini-
mum. End of discharge is defined by the minimum voltage which is dependent on 
the battery technology. If the battery is connected to a load, the voltage drops be-
cause of the non-linearity of the battery inner resistance. Also the temperature influ-
ences the battery voltage. To measure the correct value the Idle-Voltage has to be 
measured. For some milli-seconds idle conditions are engendered and measured. 
The discharge has to be disrupted when the voltage is under a certain minimum 
voltage as well as in high load cases to secure the battery from damage. For resi-
dential homes the battery capacity has to be well designed. Its capacity shall be 
large enough that a discharge rate of 1C (1D in some literature) will not be exceed-
ed (see chapter 3.2.2). For example: In case the stove, oven, microwave, toaster, 
both hair dryer, washing machine, cloth dryer, dishwasher would be activated at the 
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same time, the maximum  load would be approximately 15 kW. Residents cannot or 
should not use all high power loads simultaneously. In 2012 battery systems are sort 
of pioneer work, batteries are proven to function and work stable. Prices are high. 
To store one kWh costs 34 cents minimum for lead batteries (27). If the electricity is 
consumed from a PV generator or grid another 25 cents can be added (accumulat-
ed: 59 cents). Even a natural gas generator can supply cheaper energy in 2012. In 
case efficiency is 25 %, 4 kWhth gas energy are needed to produce 1 kWh of elec-
tricity. One kWh gas currently costs 6 cents. 24 cents would be the cost for the gas 
for 1 kWhel. 

Charging 

In case of charging the nobler electrode material is oxidized, the less noble one is 
reduced. At the anode the oxidation process takes place, at the cathode the reduc-
tion process occurs. For reaching maximum state of charge (SoC) there are many 
techniques for charging. The most common charging procedure is the IU-Version. At 
first a static current with ranging voltage is applied. By charging the voltage rises 
and when a certain criterion is reached the charging process is switched to a con-
stant voltage with ranging current. One criterion to switch from constant current to 
voltage-charging is reaching a certain voltage value, another one would be time, but 
the latter is rather imprecise. The charging procedure for a battery system in combi-
nation with PV and several loads will have to conquer with highly fluctuating charac-
teristics. Charging is stopped if the current under-runs a minimum value (see Figure 
3-22). Also the energy supplied to the battery can be measured as a further criteri-
on. 

 

Figure 3-22: I-U-Charging Curve: If the specified voltage is reached the constant-current 
charging is switched to constant voltage charging. 
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3.2.5 Efficiency, Energy and Capacity 

Efficiency 

The efficiency of a battery is defined by the discharged energy to the charged ener-
gy (see Equation 3-6). To measure the efficiency, at every time voltage and current 
have to be measured. 

ߟ = ௖௛௔௥௚௘ܧௗ௜௦௖௛௔௥௚௘ܧ	 = 	൫ܷௗ௜௦௖௛௔௥௚௘׬ × ൫׬ݐௗ௜௦௖௛௔௥௚௘൯݀ܫ	 ௖ܷ௛௔௥௚௘ ݐ௖௛௔௥௚௘൯݀ܫ	×	  

Equation 3-6: Efficiency of a Battery – Discharged to charged Energy (28) 

Energy and Capacity 

The capacity or stored energy is defined and measured differently. Instead of energy 
normally the capacity is given in ampere hours (Ah) which is a rather imprecise val-
ue for the really stored energy. The charged and discharge charges describes the 
storage capacity but not the energy which the battery has powered. Since the volt-
age is diminished when the battery is attached to a load, its efficiency is lower. The 
energy which can be used is dependent on all factors discussed in chapter 3.2.2. 

3.2.6 DC or AC Bus connected Batteries 

Residential homes are often combined with photovoltaic systems. At this system it 
has to be decided to connect the battery with DC/DC-inverters to the DC bus of the 
photovoltaic. Alternatively, the battery can be connected to the AC bus side together 
with the loads or/and additional generators (see Figure 3-23). The advantage is the 
cheaper solution for the DC/DC-inverters and the use of the DC/AC-inverter of the 
PV-system. The meter set up is coupled in after the PV-inverter. The energy losses 
will not be subsided while charging and discharging the battery. The disadvantage is 
that the battery can’t be charged during low power seasons by the grid or additional 
generators. An AC battery system is shown in Figure 3-24. 
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EV to extend range by recharging the battery or as heating applications to conserve 
the battery. 

Analysis 

Fuel analysis describes the extraction or parting of one material in more substances. 
Benzene, diesel and kerosene are refined from mineral naphtha. Renewable energy 
fuels like biogas are also analysed. Biogas is produced by fermentation. The com-
pounding has different qualities, depending on the used biological materials, and 
has to be processed and refined. 

Synthesis 

Fuel synthesis describes the conversion from two or more raw materials to useable 
fuels. As an example bio-diesel is processed via trans-esterification mostly out of 
raps-oil. In future methane will become a synthesized fuel. It is produced using elec-
trical energy. 

3.3.1 Future Fuels 

The demand of fuel produced by non-mineral-naphtha-based will rise over the next 
decades since the time of the peak oil has passed. The supply will decrease and 
demand will rise. The demand will not be saturated by biofuels since it stands con-
trary to the food production. Another type of synthetic fuels has to be manufactured. 
A totally technical produced fuel. Two options for fully technical produced fuels are 
available: Hydrogen and methane. 

Hydrogen (Decomposition) 

Hydrogen is produced by decomposition of water. Hydrogen is separated from oxy-
gen using electrolysis. The voltage of the electrolyser depends on the used process 
(e.g. the voltage can be reduced by using an alkaline dilution). To engender electric 
energy, fuel cells or modified combustion engines can be used. Gas turbines can be 
adapted to use hydrogen instead of natural gas. The storage of hydrogen and trans-
portation of large hydrogen quantities has not yet been cleared.  
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Methane (Synthesis) 

Methane can be mixed with natural gas in a huge variety. The storage capacity in 
Germany accumulates to 200 TWh of thermal energy. Methane can be fabricated 
out of hydrogen and carbon dioxide. The process is called methanation. In Germany 
the technical synthesising of methane is promoted by the German federal ministry of 
environment, nature conservation and nuclear safety and developed by ZSW, 
Fraunhofer Institute and SolarFuel. The project is called Power-to-Gas (P2G). The 
sorts of technologies are still in a precommissioning inspection state. Excess electric 
energy from wind or photovoltaic should be used to convert electric power to me-
thane. Overall efficiency is down to 35 % by using combined gas and steam power 
plants and if thermal energy is wasted (29). A look-out on the P2G technology can 
be found in chapter 7.2. 

3.3.2 Usage of Fuels Micro Combined Heat and Power Plants 

Future micro combined heat and power (µCHP) plants are generators which supply 
electric and thermal energy to the home. Standard sizes are one half up to five kWel 
and 15 kWth. These systems will cover a major role in self-sufficient homes. Small 
energy backup systems are useful to minimize overall cost due to savings relating to 
the energy supply company. Small generators will help to fit the high balancing 
need, to stabilize the grid and increase the internal consumption rate as high as 
100%. Warmth is required all year long for heating up drinking water and in winter 
for heating the accommodations. The µCHP systems can be based on a Stirling or 
combustion engine. The systems can be designed to accept multiple fuels like natu-
ral gas as well as hydrogen. Another great opportunity is wooden-chips or pellets. 
µCHP will be powered by wood, natural gas (biogas or synthesized) or hydrogen. 
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Natural Gas 

Natural gas distribution system is even as large as the power distribution system 
and widely spread over whole Germany. The power grid supplies no storage capaci-
ty (0,040 TWhel). The gas distribution system instead offers an enormous storage 
capacity of around 200 TWh in Germany. Natural gas (NG) sterling engines ad-
vantages and disadvantages will be found in Table 3-6. 

 
Table 3-6: Advantages and Disadvantages of Natural Gas 

Advantages + Disadvantages - 

Installation almost everywhere Installation Cost 

Low maintenance cost Lower efficiency 

Subsidy 5,11 €cent/kWhel Connectivity to Internet

Hydrogen 

Main advantage of hydrogen (H2) is the absolute non-toxic combustion. There are 
no carbon dioxide emissions while burning. Natural gas (NG) got low carbon dioxide 
ratings, the ratio between carbon and hydrogen is 1:4. For residential home applica-
tions hydrogen tank can be more voluminous compared to mobile applications in 
cars. Storage size can be done with low specific energy density metal hydride (MH) 
materials which are able to store 1 - 4 % kg(H2O)/kg(MH). In Table 3-7 a compari-
son is shown between hydrogen (H2) and methane (CH4). 

Table 3-7: Comparison between hydrogen and methane 

H2 CH4 

Storage - Storage + 

Sterling engines and com-
bustion engines 

Sterling and combustion 
engines 

Transportation - Transportation + 

High efficiency + Moderate efficiency 

Fuel Cell available Fuel Cell available 
Carbon is split from CH4  
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4.1 Potential of PV-Battery Systems 

As an introduction two charts are shown to demonstrate which potential impact a 
battery system has to improve the internal consumption quote (ICQ). Figure 4-26 
shows the internal consumption rate in percentage scale dependent on the useable 
battery capacity of kilo Watt hours. The chart is calculated for a residential home 
with a load and generation of 5000 kWh. The ICQ rises to a maximum value of 
74 %. The minimum with no battery system is 35 %. In Figure 4-27 the increase of 
ICQ is shown. This chart is meant for economic analysis. The total cost per added 
kWh can be reckoned and compared to the increase of ICQ. Example: The ICQ is 
8 percentage points higher when using a one kilo watt hour sized battery instead of 
no battery. The result is 35 % + 8 % equals 43 % ICQ. Values have to be accumu-
lated for the total percentage point raise. 

 

Figure 4-26: Internal Consumption Quote over Useable Battery Capacity 

 

Figure 4-27: Increase of ICQ in percentage points over the battery size.  
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4.2 Basic environmental Constraints 

In the beginning the constraints which should be implemented in the program was 
identified. A special look was taken at the photovoltaic (PV) and the combined heat 
and power (CHP) law. For these generators the limitations are well known. As for 
mini wind power systems there are no limitations except regulations from the minis-
try of building authorities. The building authorities must approve the location for 
erecting of the wind tower. 

4.2.1 EEG and KWK-G Subsidies 

The EEG (Erneuerbare Energien Gesetz) is the German law for renewable 
energies. EEG subsidies were cut by ~30% in Q1/2012 for regular rooftop-mounted 
PV generators up to 30 kW. The power is subsided with different rates for power fed 
into grid and the energy used at home by one-self. Since energy prices are rising to 
increase internal consumption becomes more reliable and self-sustaining systems 
more reasonable in the future. 

KWK-G (Kraft Wärme Kopplungs Gesetz) is the German law for combined heat and 
power generators. CHP up to 2 MW are subsided with 5.11 €cents/kWh plus the 
price on the EEX market by the KWK-G. In the first 5 years after installation an add 
on of 2 ct/kWh is paid for electricity.  

4.2.2 Photovoltaic 70% Cut 

PV generates enormous peak power without any practical energy supply. Cutting 
the performance to 70 % will help to smooth the energy fed into grid with minimal 
impact to the energy yield. The EEG2012 law requires a 70 % cut off or a cut of con-
trol even for small plants up to 30 kW. 

As shown in Figure 4-28 the energy loss by cutting the rated module to inverter ratio 
to 70 % is as low as 5 %. 
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Figure 4-28: Energy losses of PV/Inverter ratio: At 70 % ratio the losses accumulates to 
5 % (31) 

Since PV modules become cheaper while playing a smaller part in the overall pur-
chase costs, there is the opportunity to select another PV / inverter ratio. The PV / 
inverter ratio is described as ratio between the PV modules rated power to inverter 
rated power. For example a ratio of 0.9 defines that 900 W (rated power under STC) 
is installed on an inverter with max power 1000 W. In future more and more plants 
will be installed “oversized” with ratios over 1.43 or even more. 1.43 occurs when 
considering the 70 % cut. Instead of cutting down the inverter to 70% size the PV 
modules are increased to one divided by 70 % equals 1.43. The excess energy 
generated by “oversizing” the modules must be used instantly. 

One practical, elegant and cheap solution is to use this excess energy by heating up 
water with heat elements. Further options are to extend fridges with an added stor-
age for cold or even use a heat pump. 

Alternatively the generator can be equipped with a remote cut off control which will 
disconnect the PV plant from the grid if it is destabilized. Destabilisation occurs 
when frequency or voltages gets out of limits. 

4.2.3 50,2 Hertz Problem PV or Controllable Active Loads 

Up to now all PV inverters were set to automatically shut down at 50,2 Hertz grid 
frequency. That is a slight increase of 4 ‰ to normal standard 50 Hertz. Since PV in 
Germany is extended up to more than 24 GW (2011) installed power the automatic 
shut-down of all PV system would have an enormous impact that could end in a 
dramatic worst case break down on the entire European integrated power grid. 
Since minimum load during summer time is around 70 GW, so 28.6 % of energy 
would instantly shut-off. In Bavaria, for example, 17 GW are installed. The new EEG 
maximum power output will be cut off at 70 % or the PV system must offer total re-
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mote cut off if the case of too much generation occurs. Instead of cutting off PV, 
controllable active loads (CAL) could do balancing and use this elsewise wasted 
energy. At weak spots of the electrical distribution system loads can be installed 
which produce value which is needed when there is less energy like power-to-gas 
(P2G; see chapter 7.2). 

4.3 Basics for Software Development 

4.3.1 Methodology 

The methodology contains the step by step proceedings of the program design and 
operation procedures. The PV battery program was designed to be with KISS ap-
proach (Keep it short and simple). Therefore Excel and the integrated Visual Basic 
for Applications language (VBA) were chosen as program platform. The office prod-
uct is wide spread. 

First approach: 

• One generator profile 

• One H0 load profile 

• One ideal storage “bucket“ 

One generator (photovoltaic) supplies the consumers of a residential house in addi-
tion to the grid. The consumption of the house hold is described via a standardised 
load profile called H0. H0 is the only profile for residential homes. For non-
residential homes there are other profiles like G0 for business, N0 for night powered 
heaters, L0 for farmers and A0 for Traffic lights. 

The profile H0 is an average of 150 households. Time steps accuracy is 15 minutes. 
The interval size of 15 minutes is used as default by utilities for accounting. The PV 
data was obtained via SQL database of GE Global Research Europe in Garching 
near Munich. The one second accuracy was summed up to 15 minute means. 

The load and generation profiles can be subtracted for reckoning the energy value 
which has to be charged or discharged (see Equation 4-7): Battery	Energy	Discharge = Load	Energy	General	 − 	PV	Generation 

Equation 4-7: Equation for Battery Energy Discharge 

The battery calculation algorithm was designed next. Excess energy is stored to the 
battery within set boundaries. Energy is supplied by the battery as long the minimum 
state of charge is not reached. The internal consumption quote in the program is 
applies to the total load data and not to the total generation. 
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The first extension stepped into action soon afterwards. Three more generators and 
loads can be added to the calculation. Efficiency for the battery was added. Losses 
for charging and discharging can be set to different efficiency values. 

To exchange the profiles more comfortably, instead of copy paste procedure, a mac-
ro (VBA-function) enables the user to easily do the exchange. 

4.3.2 Definitions 

Definitions make understanding much simpler. For example battery is often used as 
a synonym for a rechargeable battery. In the sub-chapters following items will be 
declared: 

• Generators and Loads 

• Internal Consumption and Self-Sustain Quote 

• Battery States 

Generators 

Generators produce electric energy. The energy values are set in profiles. Four 
generators are applied as shown in Table 4-8. The generation profiles have to be in 
15 minute intervals for a whole year. 

Table 4-8: Generators for PV-Battery-Tool 

Generators 

Photovoltaic (PV) 

Wind 

Combined Heat 
and Power (CHP) 

GenX* 

* GenX is open for a back-up generator or a self-defined generator 

Loads 

Loads consume electric energy. Loads are a gathering of residential appliances or 
high power consumers like the heat pump or an electric vehicle. The energy values 
are set in profiles. Four loads are applied as shown in Table 4-9. The load profiles 
have to be in 15 minute intervals for a whole year. 
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Table 4-9: Loads for PV-Battery-Tool 

Loads 

General (entire Household) 

Car 

Heat Pump 

LoadX* 

* LoadX is an open profile for a self-definable load 

Internal Consumption and Self-Sustainability Quote 

The internal consumption quote used in the program is the self-sustainability quote 
described as SSQ. Since the system is not meant for 100% self-sustainable residen-
tial homes it is still marked as internal consumption. 

 

Internal Consumption Quote (ICQ) 

The EEG law defines the internal consumption quote as the energy used from PV by 
energy produced from PV. The energy used from PV is the energy produced from 
PV subtracted by the energy fed into grid. The internal consumption quote can be 
seen in following Equation 4-8: ܳܥܫ = ܸܲ	݉݋ݎ݂	݀݁ܿݑ݀݋ݎ݌	ݕ݃ݎ݁݊ܧ	 − ܸܲ	݉݋ݎ݂	݀݁ܿݑ݀݋ݎ݌	ݕ݃ݎ݁݊ܧ݀݅ݎܩ	݋ݐ݊݅	݂݀݁	ݕ݃ݎ݁݊ܧ  

Equation 4-8: Internal Consumption Equation by EEG 

 

Self-Sustainability Quote (SSQ) 

The EEG internal consumption equation does not describe the real ratio of the total 
used energy at home to the used energy from Generators. The following Equation 
4-9 describes the self-sustainability grade of system. ܵܵܳ = ݏݎ݋ݐܽݎ݁݊݁ܩ	݉݋ݎ݂	݀݁ܿݑ݀݋ݎ݌	ݕ݃ݎ݁݊ܧ	 − ݁݉݋ܪ	ݐܽ	ݕ݃ݎ݁݊ܧ	݀݁ݏܷ݀݅ݎܩ	݋ݐ݊݅	݂݀݁	ݕ݃ݎ݁݊ܧ  

Equation 4-9: Equation of Self-sustainability Grade based on Used Energy at Home 

 

ICQ describes the degree of utilisation of the generator while the SSQ describes the 
utilisation condition of the entire. 

 



FUNDAMENTALS FOR THE PV-BATTERY-TOOL
 

 

35 

Examples for the ICQ and SSQ equations: 

Only a small PV system with 2 kW is considered. Over a year it produced 2000 
kWh. An Energy amount of 1000 kWh was supplied to the grid (fed into grid). 4000 
kWh have been supplied by the grid by the energy supply company (ESC) / utility. 

For Equation 4-8: ܳܥܫ௘௫௔௠௣௟௘ = 2000	ܹ݇ℎ − 1000	ܹ݇ℎ2000	ܹ݇ℎ = 50	%	
For Equation 4-9 used Energy is supplied energy from ESC + (Energy pro-

duced from PV – Energy fed into Grid): ܵܵܳ௘௫௔௠௣௟௘ = 2000	ܹ݇ℎ − 1000	ܹ݇ℎ4000	ܹ݇ℎ + (2000	ܹ݇ℎ − 1000	ܹ݇ℎ)	 = 20	% 

Equation 4-9 is the equation used in the program. 

In the following charts are the characteristics of IC and SSQ shown. The chart is 
standardised for 10.000 kWh/a of general load, the battery capacity is zero. Figure 
4-29 and Figure 4-30 shows the IC and SSQ in dependency of the PV Generator 
size. In the first chart PV generator size is step by step increased linearly to 20 kW 
power and in the second chart scaled logarithmically. Standard utilisation is one 
thousand hours per one kW installed power. 

 

 

Figure 4-29: ICQ and SSQ scaled linear to PV size multiplied by a utilization time of 
1000 h divided by Load 
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Figure 4-30: ICQ and SSQ logarithmically scaled 

Looking at the equations for ICQ and SSQ there are three ways to improve the in-
ternal consumption quote respectively the self-sustainability grade:  

 

1. Increase power output from generators / PV 

2. Decrease energy feed into grid 

3. Decrease energy use at home 

 

These three steps refer to many possible options:  
 

at 1. Install a more powerful PV generator,   
a small additional generator to provide at every time of day. 

at 2. Usage of a storage,   
adjust energy consumption behaviour,  
switch loads to sun shine hours (decrease idle load) 

at 3. Buy class A to A+++* labelled equipment, pay attention to idle loads 

*EU Classes A to D see Annex page A 

In this project each point is considered, but the focus will be on storage dimension-
ing. 
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4.3.3 Standard Households one to three 

Standard Household 1 

Standard household 0 is a household with four persons. Detailed information is 
found on the list: 

• ~ 4 people 

• ~ 5000 kWh General Load 

• 5 kW roof-top-installation 

Ratio of loads: General 100 %. 

Standard Household 2 

Standard household 2 is a household with four persons and with a view to the future 
with two electric powered or hybrid plug in cars. 

• All features of Household 1 in addition or exchange with: 

• 10 kW roof-top-installation  
Dimension factor for PV will rise  due to cost drop for modules prise rise 
in power cost cutting of subsidies 

• 5000 kWh for two electric powered vehicles: one plug in hybrid and one EV 
or two plug in hybrids. Demand estimated 25.000 km/a for both cars in total. 

electric energy for 100 km: ~ 20 kWh ⇒ 20	 ௞ௐ௛ଵ଴଴	௞௠ × 250	 ଵ଴଴	௞௠௔ = 5000	 ௞ௐ௛௔  

Ratio of loads: General 50 %, Car 50 % 

Standard Household 3 

Standard household 3 is a household with four persons, owning two electric pow-
ered or hybrid plug in cars and the house is supplied by a warmth pump. 

• All features of Household 2 in addition or exchange with: 

• 15 kW roof-top-installation  Dimension factor for PV will rise due to cost 
drop for modules prise rise in power cost  cutting of subsidies 

• 5000 kWh for Heat Pump 

Ratio of loads: General 33,33 %, Car 33,33 %, Heat Pump 33,33 % 
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4.4.5 Monte Carlo Simulation 

The Monte Carlo Simulation (MCS) gives the opportunity to see what bandwidth 
variety the conclusion can have. The MCS calculate the data by diversifying the 
loads, generations and battery-sizes. Therefore the loads and generations are 
changed from plus minus X % with a Gauss-distribution in eleven quantified steps. 
The battery values are distributed as a Weibull-distribution, due to the fact that bat-
teries mostly do not hit their rated capacity. Also they are affected over time by their 
usage, which will lead to capacity loss. As conclusion a bandwidth variety with their 
possibilities of occurrence are given. The parameter can be set. 

 

Figure 4-41: Gauss-Distribution 

 

Figure 4-42: Weibull-Distribution 

Plot for Standard Values: PV 5 kW, Load General 5000 kWh/h, Battery 5 kWh, 
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Figure 4-43: Bandwidth – Probability over Internal Consumption Quote 
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rameter can be displayed as dependency of the ratios which maxes similar sized 
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Table 4-14: Ratios for Robustness Simulation 
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5 Software Development Method 

5.1 Program Analysis and Finding Best Parameters 

Several simulations were run with different load distributions. For running the simu-
lation the standard generator is PV. In chapter 4.3.3 standard households were de-
fined. For a better compatibility only the ratios were taken into account of the ro-
bustness simulation (see chapter 4.4.6). The ratios enable the comparison to similar 
sized systems. 

5.1.1 Robustness Simulation 

The following diagrams make clear how the internal consumption can be increased. 
The ratio PV/Load and Battery/Load have to be increased. PV or battery capacity 
has to be raised or load has to be decreased. The internal consumption and battery 
lifetime is dependent on the generation and load profiles. 

Standard Household 1 features mostly daily concentrated loads during the day and 
at night no big idle consumers are connected to the system. 

Standard Household 2 instead has got electric vehicles, which consumes as much 
power is the general household load. 

Standard Household 3 got a heat pump and electric vehicles which could be ena-
bled during daytime, but the tariff from the energy supply company allows a special 
contract to just use the heat pump during night hours. 

Each standard household is the used data and profile given. The heat pump of 
“Standard Household 3” the heat pump operation algorithm can be improved by us-
ing the heat pump on days with high solar irradiance and other occasions which fit 
the energy supply company needs. The internal consumption quote rises when gen-
eration and load appear simultaneously. The battery is less used and lifetime is in-
creased. If load and generation do not happen simultaneously the battery is able to 
store the energy and supply it when the generator cannot supply energy. Thus bat-
tery is used often and its lifetime decreases. This case applies for PV. The generator 
only produces power during daytime. Loads which are demanded during night hours 
cannot be supplied instantly. For each standard household two graphs are shown as 
well as the used profiles names. Table 5-15 shows the Inputs and the assigned pro-
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files or data. The profile for load general is my own profile from the first three month 
of 2012 put together four times for a whole year. 

Table 5-15: Inputs and Profile Assignment for Standard Household 1, 2 and 3 

Input Profile / Data 

Generator PV PV_Garching_1000kWh 

Load General Rics_Loadprofile_MiddleOfJanuaryToMiddleOfMarch 

Load Heat Pump HP_night_Optimized_0_to_6 

Load Car Car_night_0_to_6_1000kWh_per_year 

PV 
70 % cut off: No 

PV/Inverter Ratio: 1 

Battery 

SoCmin:  0 % 

SoCmax:  100 % 

Cyclestability:  2500 

Input/Output Efficiency: 98 % 

Ratios #1 PV 0.1 … 2 ௞ௐ௣ଵ଴଴଴ ௞ௐ௛ 
Ratio #2 Bat 0.1 … 4 ௞ௐ௛ଵ଴଴଴ ௞ௐ௛ 

Chart Interpretation General  

The first table shows the lifetime expectation for the battery (see Figure 5-52). The 
red area shows insufficient battery lifetime, the blue to dark blue area sufficient life-
time up to 20 years and the white area the lifetime between shows the area of medi-
um lifetime expectation. The second table in the sub-chapters named Household 1 
to 3 always shows the internal consumption quote over the two ratios (see Figure 
5-53). The green area shows the highest, yellow medium and red low internal con-
sumption rates. For a quick comparison the two charts are simplified using less data 
and compared in chapter 5.1.2. 
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Household 1 

The data for household 1 is shown in Table 5-16. The lifetime for household 1 is 
shown in Table 5-17Table 5-16. For the result for internal consumption see Table 
5-18. 

Table 5-16: Household 1 data 

Household data Values 

Persons 4

Load General 5,000 kWh 

Generator PV (Ratio 1 = 1) 5 kW 

Ratio PV 0.1 … 2.0 of Generator PV 

Battery Capacity (Ratio 2 = 1) 5 kWh 

Battery Ratio 
0.2 … 4.0 of Battery Capacity 

1 … 20 kWh 

 

Table 5-17: Household 1 Lifetime: Low values are marked red; high values are marked 
dark blue; the maximum values are truncated over 20 years 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2 

0,2 20 18 10 8 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 

0,4 20 20 15 11 9 9 8 8 7 7 7 7 7 7 7 7 7 6 6 6 

0,6 20 20 19 13 11 10 9 9 8 8 8 8 7 7 7 7 7 7 7 7 

0,8 20 20 20 16 13 11 10 9 9 9 8 8 8 8 8 7 7 7 7 7 

1 20 20 20 18 14 12 11 10 10 9 9 9 8 8 8 8 8 8 7 7 

1,2 20 20 20 20 16 13 12 11 10 10 9 9 9 9 8 8 8 8 8 8 

1,4 20 20 20 20 18 15 13 12 11 10 10 10 9 9 9 9 9 9 8 8 

1,6 20 20 20 20 20 16 14 13 12 11 11 11 10 10 10 10 9 9 9 9 

1,8 20 20 20 20 20 18 16 14 13 12 12 11 11 11 11 10 10 10 10 10 

2 20 20 20 20 20 20 17 15 14 13 13 12 12 12 12 11 11 11 11 11 

2,2 20 20 20 20 20 20 19 17 15 15 14 14 13 13 12 12 12 12 12 12 

2,4 20 20 20 20 20 20 20 18 17 16 15 15 14 14 13 13 13 13 13 13 

2,6 20 20 20 20 20 20 20 19 18 17 16 16 15 15 14 14 14 14 14 13 

2,8 20 20 20 20 20 20 20 20 19 18 17 17 16 16 15 15 15 15 15 14 

3 20 20 20 20 20 20 20 20 20 19 18 18 17 17 16 16 16 16 16 15 

3,2 20 20 20 20 20 20 20 20 20 20 19 19 18 18 17 17 17 17 17 16 

3,4 20 20 20 20 20 20 20 20 20 20 20 20 19 19 18 18 18 18 17 17 

3,6 20 20 20 20 20 20 20 20 20 20 20 20 20 20 19 19 19 19 18 18 

3,8 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 19 19 

4 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 
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Table 5-18: Household 1 ICQ: Low values are marked red; high values are marked 
green 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2 

0 10 16 21 24 27 29 31 33 34 35 36 37 38 38 39 39 40 40 41 41 

0,2 10 19 26 30 34 36 39 40 42 43 44 45 46 47 47 48 48 49 49 50 

0,4 10 20 28 33 37 41 43 45 47 48 50 51 52 53 54 54 55 56 56 57 

0,6 10 20 29 35 40 44 47 50 52 53 55 56 57 59 59 60 61 62 62 63 

0,8 10 20 29 37 43 47 51 54 56 58 60 61 63 64 65 66 67 68 68 69 

1 10 20 30 38 45 50 54 57 60 62 64 65 67 68 70 71 72 73 73 74 

1,2 10 20 30 39 46 51 56 60 63 65 67 69 71 72 74 75 76 77 78 79 

1,4 10 20 30 39 47 53 58 62 65 68 70 72 74 75 77 78 79 80 81 82 

1,6 10 20 30 39 47 53 59 63 66 69 72 74 76 77 79 80 81 82 83 84 

1,8 10 20 30 40 47 54 59 64 67 70 73 75 77 79 80 81 83 84 85 86 

2 10 20 30 40 48 54 60 64 68 71 74 76 78 79 81 82 83 85 86 87 

2,2 10 20 30 40 48 54 60 65 69 72 74 76 78 80 82 83 84 85 86 87 

2,4 10 20 30 40 48 55 60 65 69 72 75 77 79 81 82 83 85 86 87 88 

2,6 10 20 30 40 48 55 61 65 70 73 75 77 79 81 82 84 85 86 87 88 

2,8 10 20 30 40 48 55 61 66 70 73 76 78 80 81 83 84 85 86 87 88 

3 10 20 30 40 48 55 61 66 70 73 76 78 80 82 83 84 85 87 87 88 

3,2 10 20 30 40 48 55 61 66 71 74 76 78 80 82 83 85 86 87 88 89 

3,4 10 20 30 40 48 55 61 67 71 74 76 79 80 82 83 85 86 87 88 89 

3,6 10 20 30 40 48 56 62 67 71 74 77 79 81 82 84 85 86 87 88 89 

3,8 10 20 30 40 48 56 62 67 71 74 77 79 81 82 84 85 86 87 88 89 

4 10 20 30 40 49 56 62 67 72 74 77 79 81 82 84 85 86 87 88 89 

Household 2 

The data for household 2 is shown in Table 5-19. The lifetime for household 2 is 
shown in Table 5-20. For the result for internal consumption see Table 5-21.  

Table 5-19: Household 2 data 

Household data Values 

Persons 4 

Load General 5,000 kWh 

Load Car 5,000 kWh 

Load Total 10,000 kWh 

Generator PV (Ratio 1 = 1) 10 kW 

Ratio PV 
0.1 … 2.0 of Generator PV 

1 … 20 kW

Battery Capacity (Ratio 2 = 1) 10 kWh 

Battery Ratio 
0.2 … 4.0 of Battery Capacity 

2 … 40 kWh 
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Table 5-20: Household 2 Lifetime: Low values are marked red; high values are marked 
dark blue; the maximum values are truncated over 20 years 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2 

0,2 20 11 9 8 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6 

0,4 20 16 11 9 9 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 

0,6 20 20 13 11 9 9 8 8 8 7 7 7 7 7 7 7 7 7 7 7 

0,8 20 20 15 12 10 9 9 9 8 8 8 8 7 7 7 7 7 7 7 7 

1 20 20 18 13 11 10 9 9 9 8 8 8 8 8 7 7 7 7 7 7 

1,2 20 20 20 15 12 11 10 9 9 9 8 8 8 8 8 8 7 7 7 7 

1,4 20 20 20 16 13 11 10 10 9 9 9 8 8 8 8 8 8 8 7 7 

1,6 20 20 20 18 14 12 11 10 10 9 9 9 8 8 8 8 8 8 8 8 

1,8 20 20 20 19 15 13 12 11 10 10 9 9 9 9 8 8 8 8 8 8 

2 20 20 20 20 17 14 12 11 11 10 10 9 9 9 9 9 8 8 8 8 

2,2 20 20 20 20 18 15 13 12 11 11 10 10 10 9 9 9 9 9 9 8 

2,4 20 20 20 20 19 16 14 13 12 12 11 11 10 10 10 10 10 9 9 9 

2,6 20 20 20 20 20 18 15 14 13 12 12 12 11 11 11 10 10 10 10 10 

2,8 20 20 20 20 20 19 17 15 14 13 13 12 12 12 11 11 11 11 11 10 

3 20 20 20 20 20 20 18 16 15 14 14 13 13 12 12 12 12 11 11 11 

3,2 20 20 20 20 20 20 19 17 16 15 14 14 13 13 13 13 12 12 12 12 

3,4 20 20 20 20 20 20 20 18 17 16 15 15 14 14 14 13 13 13 13 13 

3,6 20 20 20 20 20 20 20 19 17 17 16 15 15 15 14 14 14 14 13 13 

3,8 20 20 20 20 20 20 20 20 18 17 17 16 16 15 15 15 15 14 14 14 

4 20 20 20 20 20 20 20 20 19 18 18 17 16 16 16 15 15 15 15 15 

 

Table 5-21: Household 2 ICQ: Low values are marked red; high values are marked 
green 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2 

0 8  12 15 16 18 18 19 20 20 21 21 21 22 22 22 22 23 23 23 23 

0,2 10 17 20 23 24 26 27 27 28 28 29 29 29 30 30 30 30 30 31 31 

0,4 10 19 24 27 29 31 32 33 34 35 35 36 36 37 37 37 37 38 38 38 

0,6 10 20 26 30 33 35 37 38 39 40 41 42 42 43 43 44 44 44 45 45 

0,8 10 20 28 33 37 39 41 43 44 46 47 47 48 49 49 50 50 51 51 51 

1 10 20 29 35 40 43 45 47 49 50 52 53 54 54 55 56 56 57 57 58 

1,2 10 20 29 36 42 46 49 51 53 55 56 57 58 59 60 61 62 63 63 64 

1,4 10 20 30 38 44 48 52 55 57 59 60 62 63 64 65 66 67 68 69 69 

1,6 10 20 30 38 45 50 55 58 60 63 64 66 68 69 70 71 72 73 74 75 

1,8 10 20 30 39 46 52 57 61 64 66 68 70 72 73 75 76 77 78 79 80 

2 10 20 30 39 47 53 59 63 66 69 71 73 75 76 78 79 80 82 83 83 

2,2 10 20 30 40 48 54 59 64 67 70 73 75 77 78 80 81 82 84 85 86 

2,4 10 20 30 40 48 54 60 64 68 71 73 76 78 79 81 82 83 85 86 87 

2,6 10 20 30 40 48 55 60 65 69 71 74 76 78 80 81 83 84 85 86 87 

2,8 10 20 30 40 48 55 61 65 69 72 74 77 79 80 82 83 84 86 87 88 

3 10 20 30 40 48 55 61 66 70 72 75 77 79 81 82 84 85 86 87 88 

3,2 10 20 30 40 48 55 61 66 70 73 75 78 79 81 83 84 85 86 87 88 

3,4 10 20 30 40 48 55 61 66 70 73 76 78 80 81 83 84 85 86 87 88 

3,6 10 20 30 40 48 56 61 66 71 73 76 78 80 82 83 85 86 87 88 89 

3,8 10 20 30 40 48 56 61 67 71 74 76 78 80 82 83 85 86 87 88 89 

4 10 20 30 40 48 56 62 67 71 74 76 79 80 82 84 85 86 87 88 89 
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Household 3 

The data for household 2 is shown in Table 5-22. The lifetime for household 2 is 
shown in Table 5-23. For the result for internal consumption see Table 5-24.  

Table 5-22: Household 3 data 

Household data Values 

Persons 4 

Load General 5,000 kWh 

Load Car 5,000 kWh 

Load Heat Pump 5,000 kWh 

Load Total 15,000 kWh 

Generator PV (Ratio 1 = 1) 15 kW 

Ratio PV 
0.1 … 2.0 of Generator PV 

1.5 … 30 kW 

Battery Capacity (Ratio 2 = 1) 15 kWh 

Battery Ratio 
0.2 … 4.0 of Battery Capacity 

3 … 60 kWh 

 

Table 5-23: Household 3 Lifetime: Low values are marked red; high values are marked 
dark blue; the maximum values are truncated over 20 years 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2 

0,2 19 10 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

0,4 20 13 10 9 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

0,6 20 16 11 10 9 8 8 8 7 7 7 7 7 7 7 7 7 7 7 7 

0,8 20 20 13 11 10 9 9 8 8 8 7 7 7 7 7 7 7 7 7 7 

1 20 20 15 12 10 10 9 9 8 8 8 8 7 7 7 7 7 7 7 7 

1,2 20 20 17 13 11 10 9 9 9 8 8 8 8 8 7 7 7 7 7 7 

1,4 20 20 19 14 12 11 10 9 9 9 8 8 8 8 8 8 8 7 7 7 

1,6 20 20 20 16 13 12 11 10 10 9 9 9 8 8 8 8 8 8 8 8 

1,8 20 20 20 18 14 13 11 11 10 10 9 9 9 9 9 8 8 8 8 8 

2 20 20 20 19 16 14 12 12 11 11 10 10 10 9 9 9 9 9 9 9 

2,2 20 20 20 20 17 15 13 12 12 11 11 11 10 10 10 10 9 9 9 9 

2,4 20 20 20 20 19 16 14 13 13 12 12 11 11 11 10 10 10 10 10 10 

2,6 20 20 20 20 20 17 15 14 13 13 12 12 12 11 11 11 11 10 10 10 

2,8 20 20 20 20 20 18 17 15 14 14 13 13 12 12 12 12 11 11 11 11 

3 20 20 20 20 20 20 18 16 15 15 14 14 13 13 13 12 12 12 12 11 

3,2 20 20 20 20 20 20 19 17 16 15 15 14 14 14 13 13 13 12 12 12 

3,4 20 20 20 20 20 20 20 18 17 16 16 15 15 14 14 14 13 13 13 13 

3,6 20 20 20 20 20 20 20 19 18 17 17 16 16 15 15 14 14 14 14 13 

3,8 20 20 20 20 20 20 20 20 19 18 17 17 16 16 16 15 15 15 14 14 

4 20 20 20 20 20 20 20 20 20 19 18 18 17 17 16 16 16 15 15 15 
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Table 5-24: Household 3 ICQ: Low values are marked red; high values are marked 
green 

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2 

0 7 10 11 12 13 13 14 14 15 15 15 15 15 15 16 16 16 16 16 16 

0,2 10 15 17 19 20 21 21 22 22 22 23 23 23 23 23 23 23 23 24 24 

0,4 10 17 21 24 25 26 27 28 29 29 29 30 30 30 30 30 31 31 31 31 

0,6 10 19 24 27 30 31 32 33 34 35 36 36 36 37 37 37 37 38 38 38 

0,8 10 20 26 31 33 35 37 38 40 40 41 42 43 43 43 44 44 44 44 45 

1 10 20 28 33 37 39 41 43 44 45 46 47 48 49 49 50 50 51 51 51 

1,2 10 20 29 35 40 43 45 47 49 50 51 52 53 54 55 55 56 57 57 57 

1,4 10 20 29 36 42 46 48 51 53 54 56 57 58 59 60 61 61 62 62 63 

1,6 10 20 30 37 43 47 51 53 55 57 59 60 61 63 63 64 65 66 67 67 

1,8 10 20 30 37 44 49 52 55 58 60 61 63 64 65 66 67 68 69 70 71 

2 10 20 30 38 44 49 53 56 59 61 63 65 66 67 69 70 70 71 72 73 

2,2 10 20 30 38 44 50 54 58 60 62 64 66 68 69 70 71 72 73 74 75 

2,4 10 20 30 38 45 50 55 58 61 63 65 67 69 70 72 73 74 75 76 77 

2,6 10 20 30 38 45 50 55 59 62 64 66 68 70 71 72 74 75 76 77 78 

2,8 10 20 30 38 45 51 55 59 62 64 67 68 70 72 73 75 76 77 78 79 

3 10 20 30 38 45 51 56 59 62 65 67 69 71 72 74 75 76 78 79 80 

3,2 10 20 30 38 45 51 56 60 63 65 67 69 71 73 74 76 77 78 79 80 

3,4 10 20 30 38 45 51 56 60 63 65 68 70 71 73 75 76 77 78 79 80 

3,6 10 20 30 38 45 51 56 60 63 66 68 70 72 73 75 76 77 79 80 81 

3,8 10 20 30 38 46 51 56 60 63 66 68 70 72 74 75 76 78 79 80 81 

4 10 20 30 38 46 52 56 60 63 66 68 70 72 74 75 77 78 79 80 81 

5.1.2 Best Working Conditions 

Best working conditions appear when battery lifetime and internal consumption 
quote gathers an optimum. Following Figure 5-54 shows a compare view of the 
Household charts. The first rows of internal consumption quote (ICQ) vary widely 
from 13 % to 41 % of one Household to another. The energy use during night is 
greatly increased from Household 1 over number 2 to number 3. The total energy 
consumption is in every case the same but the usage time differs. The internal con-
sumption quote without battery drops dependent on the ratio of energy used during 
day to energy used during night the ICQ is lower for household 2 and 3 compared to 
household 1. For the households 1 and 2 ICQ reaches in both terms with big battery 
(Ratio Battery = 4) and moderate to high PV power capability (Ratio PV = 1 … 2). 
The lifetime for household 2 and 3 are decreased significantly. The battery should 
be large and the PV system should be rated to supply the energy for the whole year 
to satisfy consumption demand (Ratio PV = 1) to extend lifetime expectancy. 
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Household 1 

Table 5-28: Household 1 Today Absolute Cost Table 5-29: Household 1 Tomorrow Absolute Cost 

 10% 20% 40% 80% 100% 120% 150% 200% 

0% 250 500 1000 2000 2500 3000 3750 5000 

100% 1050 1300 1895 3593 4253 4872 5764 7166 

200% 1850 2100 2600 4078 4873 5563 6526 8007 

300% 2650 2900 3400 4400 5014 5724 6671 8124 

400% 3450 3700 4200 5200 5700 6200 6950 8200 

 10% 20% 40% 80% 100% 120% 150% 200% 

0% 150 300 600 1200 1500 1800 2250 3000 

100% 350 500 824 1598 1938 2268 2753 3542 

200% 550 700 1000 1720 2093 2441 2944 3752 

300% 750 900 1200 1800 2129 2481 2980 3781 

400% 950 1100 1400 2000 2300 2600 3050 3800 

Table 5-30: Household 1 Today ICQ Table 5-31: Household 1 Tomorrow ICQ 

10% 20% 40% 80% 100% 120% 150% 200% 

0% 100  84  63  42  36 32 27 21

100% 25  40  50  39  35 32 29 25

200% 14  25  39  40  37 35 32 28

300% 10  18  30  39  38 35 32 28

400% 7  14  24  33  34 33 31 28

10% 20% 40% 80% 100% 120% 150% 200% 

0% 100  84 63 42 36 32 27 21

100% 44  62 72 55 49 45 39 33

200% 28  44 61 58 53 48 43 36

300% 21  34 51 57 53 49 43 36

400% 16  28 44 52 50 47 43 36
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Household 2 

Table 5-32: Household 2 Today Absolute Cost Table 5-33: Household 2 Tomorrow Absolute Cost 

10% 20% 40% 80% 100% 120% 150% 200% 

0% 250 500 1000 2000 2500 3000 3750 5000 

100% 1050 1300 2212 3784 4431 5038 5903 7273 

200% 1850 2100 2600 4821 5664 6409 7432 8996 

300% 2650 2900 3400 5017 5906 6683 7725 9298 

400% 3450 3700 4200 5200 6005 6777 7813 9365 
 

10% 20% 40% 80% 100% 120% 150% 200% 

0% 150 300 600 1200 1500 1800 2250 3000 

100% 350 500 903 1646 1983 2310 2788 3568 

200% 550 700 1000 1905 2291 2652 3171 3999 

300% 750 900 1200 1954 2352 2721 3244 4075 

400% 950 1100 1400 2000 2376 2744 3266 4091 

Table 5-34: Household 2 Today ICQ Table 5-35: Household 2 Tomorrow ICQ 

10% 20% 40% 80% 100% 120% 150% 200% 

0% 100  75  50  30  25 22 18 14

100% 29  47  46  35  32 29 26 22

200% 17  29  46  39  36 34 31 27

300% 12  21  36  40  37 35 33 29

400% 9  17  29  39  38 36 33 29
 

10% 20% 40% 80% 100% 120% 150% 200% 

0% 100  75 50 30 25 22 18 14

100% 53  73 71 53 47 42 36 30

200% 33  52 73 61 55 51 45 38

300% 25  41 61 62 57 52 47 40

400% 19  33 52 62 57 53 47 40
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Household 3 

Table 5-36: Household 3 Today Absolute Cost Table 5-37: Household 3 Tomorrow Absolute Cost 

10% 20% 40% 80% 100% 120% 150% 200% 

0% 250 500 1000 2000 2500 3000 3750 5000 

100% 1050 1300 2350 3864 4499 5095 5951 7295 

200% 1850 2100 2652 4765 5539 6247 7232 8749 

300% 2650 2900 3400 4954 5790 6539 7583 9206 

400% 3450 3700 4200 5200 5862 6622 7688 9296 
 

10% 20% 40% 80% 100% 120% 150% 200% 

0% 150 300 600 1200 1500 1800 2250 3000 

100% 350 500 938 1666 2000 2324 2800 3574 

200% 550 700 1013 1891 2260 2612 3121 3937 

300% 750 900 1200 1938 2322 2685 3208 4052 

400% 950 1100 1400 2000 2340 2706 3234 4074 

Table 5-38: Household 3 Today ICQ Table 5-39: Household 3 Tomorrow ICQ 

10% 20% 40% 80% 100% 120% 150% 200% 

0% 100  70  44  26  21  18  15  12 

100% 34  54  47  36  32  30  26  22 

200% 19  34  51  42  39  36  33  29 

300% 14  25  40  43  40  38  35  31 

400% 10  19  33  42  40  38  35  31 
 

10% 20% 40% 80% 100% 120% 150% 200% 

0% 93  65  41  24  20  17  14  11 

100% 57  80  71  52  46  41  35  29 

200% 36  57  75  60  54  50  44  37 

300% 27  44  64  61  56  52  46  39 

400% 21  36  55  60  57  52  47  40 
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6 Program Validation 

Program Validation was chosen to compare to real internal consumption quote of 
some residential homes. Data was obtained from a forum (photovoltaikforum.com). 
It is a German community was established in 2005 and discussed almost 74,000 
topics and with almost 700,000 post till now (2012). Data from a battery system was 
not checked, there was no data available for a whole year. 

6.1 Example House 1 

Person 1 is further named Kai. His data of his PV system and internal consumption 
without battery can be found in Table 6-40. 

Table 6-40: Kai’s Household 

Data Value 

Load general 2935 kWh 

Internal consumption 1214 kWh 

PV generator 9,43 kW 

Internal consumption 
quote 2010 (real) 41,4 % 

ICQ (simulated 44,7 % 

 

The program output value is 8 % higher than the measured value from Kai. With a 
five percentage error using only 15 minute means instead of 1 minute values an 
error of 2.5 % is the result. The error is dependent on user behaviour and therefore 
the applied profiles in the simulation. 
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6.2 Example House 2 

Person 2 is further called Klaus. His data of his PV system and internal consumption 
without battery can be found in Table 6-41. 

Table 6-41: Klaus’ House 

Data Value 

Load general 2650 kWh 

Internal consumption 960 kWh 

PV generator 4,2 kW 

PV generation 4000 kWh 

Energy from ESC 1690 kWh 

Internal consumption 
quote 2010 (real) 36,2 % 

ICQ (simulated) 39,0 % 

 

The internal consumption quote is 8 % higher than the simulated value. The total 
error assumes to 2.3 %. The simulation fits the output data very well. 

6.3 Simulation Compare 

The Saftbatterie Group quotes: 

“[First simulations have shown that the addition of an energy storage capacity leads 
to an increased internal consumption from 30 to 35 % up to 60 to 70 %.]” 

The PV-Battery-Tool calculation shows in dependency of different battery capacities 
an increase from 35.1 % to 74.4 % for the PV per Load * 1000 ratio equals one (see 
Table 6-42). 

Table 6-42: Software Output for PV/Load * 1000 Ratio = 1 

Battery / 
Load * 1000 

Internal Consumption Quote
(PV/Load*1000=1)

0,0 35,1% 
0,2 43,0% 
0,4 48,5% 
1,0 61,8% 
2,0 71,1% 
4,0 74,4% 
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7 Conclusion for Renewable Energy 
Balancing 

In the future many options for saving energy and producing energy in an environ-
mentally friendly way have to be taken into account as well as power grid stability. 

7.1 Battery Storage 

Battery storages are an important topic to answer the energy-transformation towards 
clean renewable energy sources. It is apparent that the European Union increases 
the funding of battery research and development projects every year. Battery stor-
ages are seen as one way in the future. Today batteries still have many problems 
(e.g. cycle stability) which will be solved or improved during further development to 
make batteries more cost efficient as well as lighter and smaller. The primary energy 
supply is divided in electrical energy and thermal energy. Therefore another way 
besides batteries – in also chemical methods - will lead to synthesised fuel by ex-
cess energy of the turbulent fluctuating renewable energy sources. One seminal 
project is the Power-to-Gas project which will be described in the following chapter 
7.2. During the conversion of electric energy to fuel and vice versa enormous quanti-
ties of heat are released. Half of the year the demand for thermal energy is high. 
The efficiency of the process can be improved up to 80 % by using the thermal en-
ergy. Synthesised fuel can be easily transported. This advantages outways the 
heavy battery technology. The use of the excess energy from PV and wind is much 
more effective compared to the natural photosynthesis. The best storage is saving 
energy. The biggest potentials for energy saving in a residential home are thermal 
applications and disconnecting idling electronic devices from the grid. Thermal ap-
plications are the washing machine, dryer, fridge (always on), stove and oven. Elec-
tronic devices which are idling consuming are often found in the living room. Many 
modern television entertainment systems are connected to the internet running con-
stantly on high power. This energy accumulates to expenses paid each year for no 
practically usage. Gas has the ability to store energy sessional. Batteries instead are 
a daily up to a maximum of weekly storage and in combination with only a PV sys-
tem it has to cope with times of insufficient irradiance. 
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supposed to change. A reduction of feed into grid energy to zero is the conse-
quence. Weather prediction helps ESCs to optimize the load profiles and therefore 
the usage of power plants, storages and in future controllable active loads (see next 
chapter). 

Controllable Active Loads 

Instead of electric energy storages for stabilising the grid of the future also loads 
have to be applied. The loads should be remotely controlled to start and stop. A load 
of that kind is called Controllable active loads (CAL) which are noticeably investigat-
ed (34). CAL systems are no devices that can supply power back into the grid. They 
can only make use out of energy prediction and excess energy. For example a stor-
age heater can be charged to its maximum level in time with high grid generation 
and keep the warmth during days with low excess energy. Directly used electric en-
ergy is better than a conversion into an electric storage solution and then powering 
again the power grid or local loads. Almost every household is connected over the 
internet. A miniature server with ARM processing units can be connected to the 
power LAN standard. The power LAN enables an easy communication platform. 
New electronic devices can be connected to the network just by plugging the plug in 
the power outlet. In the following four chapters electronic devices are categorized 
which can be addable to a “smart” system of a residential home. The CAL-function 
of the load can be switched off. The stop function stays on, if the grid is destabilized. 
Also in case certain demands of loads are gathered an entire plant can ramp up to 
supply the consumers. But this case might not be applied very often. In the following 
Table 0-43 manageable loads are shown and what energy can be switched off or 
on. 

Table 0-43:  Controllable Active Loads (CAL) 

CAL consumer Power Range from … to … in W

Fridge 100 … 200 

Storage heating or cooling 1000 … 3000 

EV 1000 … 22000 

Washing machine 1000 … 3000 

Dryer 1000 … 3000 

Dish washer 1000 … 3000 

The server gets a location number so the energy supply company (ESC) knows 
where the load is connected. The orders are than summarized at the next trans-
former station where the current load is registered and hand it over to the main 
server as a packed data file. The operator server allows certain categories to start or 
in case the grid is destabilized to shut off. Also a CAL electrical outlet can be in-
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stalled. If the grid is destabilized the “STOP” command is transferred to the outlet 
until stability is proven by a quick ramping up plant (e.g. gas and steam (GaS) power 
plant). This outlet is the only one which offers full power output with a 16 A fuse. A 
16 ampere fuse allows a power output of 3680 V (16 A * 230 V). All other connection 
should be set to only use 575 W (2.5 A fuse). These two outlets should be marked in 
different colours, e.g. white or black for the low 2.5 A fuse and with green/red LED 
light the high power outlet: Green at stable grid and red when unstable. If the light 
shows red the outlet is disconnected from the grid. This inconvenience is compen-
sated by the stability of the grid. 

Load Shifting Analysis 

Load shifting analysis is similar to CAL. The difference is the intelligent shifting of 
loads is done within a single system to optimise. The loads are not controlled by the 
ESC but rather from the owner system. Loads can be shifted from times during 
heavy loads to off peak times. Many appliances at home neither care when they are 
run nor do the people who are you using them. A control system can be easily ap-
plied and would be a mass product. Easiest connection procedure is the internet. 
The consumer can log onto a server and should tell the energy supply company:  

1. When do I want to start at least, so I am finishing right in time? 

2. How much energy do I need? Inclusive 5 min profile number. 

3. Where am I located in the power grid? 

4. How important am I? 

This data can be stored on a server and be compressed for the next server. The 
most convenient factor is that unimportant loads can be cut of the grid. First main 
application might be electronic vehicles (EV). The charging control should imple-
ment the communication device. Smart loads should also be connected to the grid 
nearby where the energy is engendered. These consumers are theoretically able to 
do load shifting: 

Application => 

Power || 
            v 

Thermal Electric 

< 100 W 
Fridge 
Cool down to low temperature 

Charge batteries: 

• eBike 25 km/h 

• Cloud computer 

> 100 W 

Heat elements :

• Drinking water 

• Dish washer 

• Washing machine 

Charge batteries: 

• Vacuum cleaner 

• Vehicle 

• eBike 45 km/h 

 


