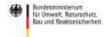

Rolf Disch: Solarsiedlung Freiburg (2000)

Der Weg ins Plus - Erste Plusenergie-Gebäude

Team Germany der TU Darmstadt:

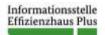
1. Platz beim Solar Decathlon 2007

1. Platz beim Solar Decathlon 2009

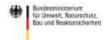


Effizienzhaus Plus Definition (Auszug) / Definition: EH Plus

- Negativer Jahres-Primär- und Endenergiebedarf ΣQ_p und $\Sigma Q_e < 0$ kWh/(m²a)
- Zuzüglich Energiebedarf Haushaltsgeräte / Beleuchtung (nur höchste Effizienzklasse)
- Abzüglich netzeingespeister regenerativer Energieüberschüsse
 (Bilanzgrenze: Grundstücksgrenze)
- Ziel: Hoher Eigennutzungsgrad der selbst erzeugten Energie
- 100% Autarkie nicht das Ziel


- Negative annual primary- and final energy demand
- Additional electricity for household appliances and interior lighting
- Use appliances with the best energy efficiency rating
- On-site-generation of all the energy generated from rebewable sources
- 2014 Energy Saving Ordinance (EnEV) requires that certification be provided as set out in DIN V 18599

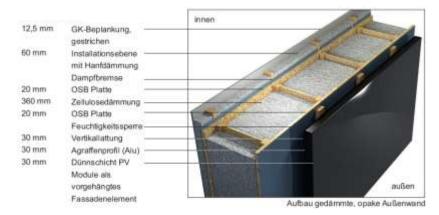




Das Effizienzhaus Plus mit Elektromobilität Konzept

- Kompaktes Design
- Maximierung Energiegewinne, Minimierung thermischer Verluste
- Deckung des Energiebedarfs durch erneuerbare, lokal erzeugte Energien
- Optimierung der Gebäudetechnik ohne Komfortverlust

www.zebau.de



4

Wandaufbau

Bundesministerium für Umwelt, Naturschutz. Bau und Reaktorskcherheit Informationsstelle Effizienzhaus Plus Aluminum & Statel 100% staffiction Riscycl durch Elimotemelem Rezyklierbarkeit Zukunft BAU Pho F Drienghous www.zebau.de

5

Luft/Wasser-Wärmepumpe - Anlage

- Wärmeleistung: 4,6 kW
- Projektierte JAZ: 3,6 (für 35°C Heizwasser bei 2°C Lufttemperatur)
- Maximale Leistungsaufnahme: 2,7 kW (inkl. Hilfsstrom)
- Grundfläche Heizzentrale: 0,62 m²

Effizienzhaus Plus - Gebäudeautomation

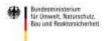
Bedarfsgerechte Regelung der Gebäudetechnik über Messwerte:

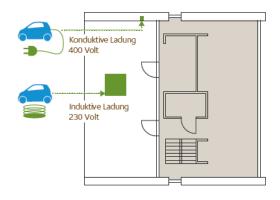
- Temperatur
- Sauerstoffgehalt in der Luft
- Luftfeuchtigkeit

Anlagenüberwachung über Messung von Betriebszuständen für:

- Erfassung von Strom- oder Wärmeverbrauch
- Energiemanagement
- Überwachung und Optimierung

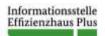
Effizienzhaus Plus - Gebäudeautomation - Steuerung




Ladesysteme

Kabelverbindung

Induktionsspulen



Elektromobilität

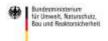
Golf Blue-e-Motion

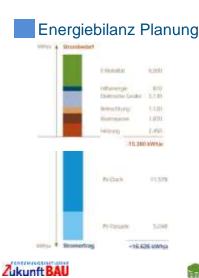
Smart fortwo electric

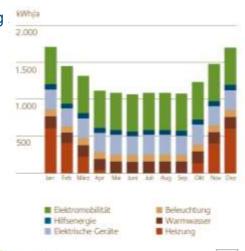
Mercedes A-Klasse

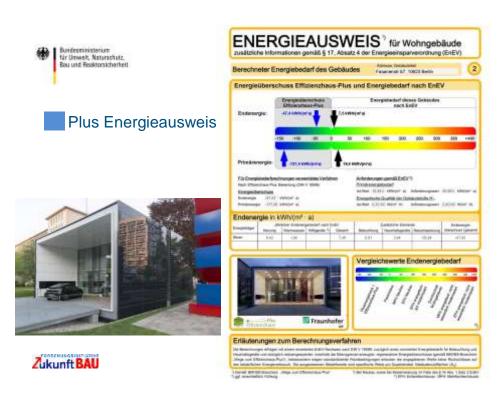
Audi A1 e-tron

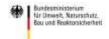
BMW ActiveE


Opel Ampera

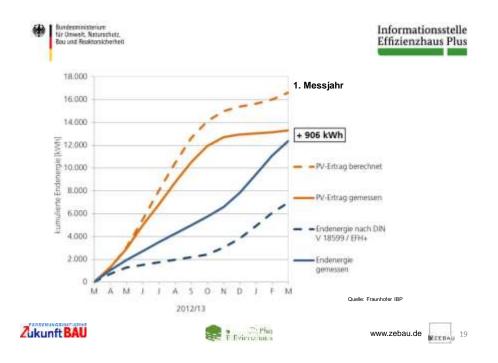


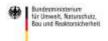


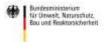




Pho F Drienghous

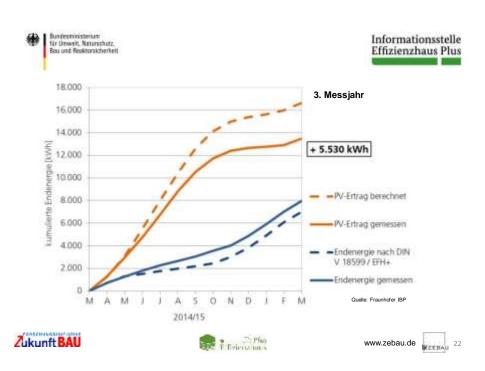



Das Effizienzhaus Plus mit Elektromobilität

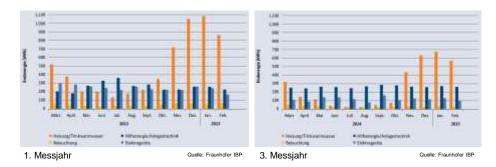

Erkenntnisse und Veränderungen nach der 1. Messperiode

- weniger Sonnenstunden in den Testzeiträumen
 - → geringerer Solarstromertrag als prognostiziert
- Alle Systeme im Haus wiesen h\u00f6here Verbr\u00e4uche auf als prognostiziert
 - Thermische Trennung der Geschosse, um Wärmeverluste zu vermeiden
 - → Einbau einer Glastür und Trennwand zwischen EG und OG
 - Wärmepumpe mit deutlich höheren Verbräuchen als erwartet
 - → Die Wärmepumpe wurde im Dezember 2013 ersetzt

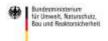
Exkurs: Wärmepumpe und Strompreis


Falls die Wärmepumpe nicht wie geplant arbeitet, merkt der Nutzer dies deutlich stärker in den Kosten als bei anderen Energieträgern

Extrapely Bardening state to Waterfelt and Engine stone Service on



Monitoring: Monatlicher Energieverbrauch



Energiebilanz: Auswertung im Vergleich (2012-2015)

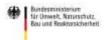
	Prognostiziert	Erste Testfamilie ^{2012/13}	Öffentlicher Betrieb ^{2013/14}	Zweite Testfamilie 2014/15
Stromerzeugung	16.625 kWh	13.306 kWh	12.644 kWh	13.490 kWh
Stromverbrauch des Gebäudes	6.992 kWh	12.400 kWh	10.633 kWh	7.960 kWh
Überschüsse ohne E-Mobilität	+ 9.633 kWh	+ 906 kWh	+ 2.011 kWh	+ 5.530 kWh
Elektromobilität	6.000 kWh	3.974 kWh	1.560 kWh	1.987 kWh
Überschüsse mit E-Mobilität	+ 3.633 kWh	- 3.068 kWh	+ 451 kWh	+ 3.543 kWh

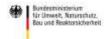
Ergebnisse

- 39 % Heizung und Trinkwarmwasser
- 39 % Hilfsenergie (u.a. Lüftung, Automation und Umwälzpumpen)
- 8 % Haushaltsgeräte und Haushaltsprozesse
- 4 % Beleuchtung

Während der Testphase der zweiten Familie ist der Energieverbrauch für den Betrieb der Wärmepumpe und der Haushaltsgeräte reduziert worden.

Relativ konstant und auf hohem Niveau zeigt sich der Energieverbrauch für die Hilfsenergie: Hier besteht Optimierungspotenzial


- 36 Gebäude bundesweit davon 34 fertiggestellt
- Monitoring: 9x 2 Jahre, 19x 1 Jahr
- Förderung von
 - Innovativen Technologien
 - Monitoring
 - Nachweis des EP-Standards



Effizienzhaus Plus, Lüneburg

Bauherr: Barbara & Jürgen Molt Eckdaten:Leichtbauweise

Nettogrundfläche 129 m²

Technik: PV-Anlage12,6 kWp

Marmor-Wandheizkörper

Dezentrale Warmwasser-Erzeugung

Baujahr: 2012

Endenergieüberschuss:

Planung: 3.424 kWh/a 7258 kWh/a 1. Messjahr:

Effizienzhaus Plus, Münnerstadt

Bauherr: Jeannette & Andreas Miller

<u>Technik</u>: PV-Anlage 23,7 kWp Batteriesystem11 kWh

Elektrotankstelle

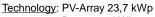
Sole-Wasser Wärmepumpe

Eckdaten: Einfamilienhaus

Leichtbauweise

Nettogrundfläche 327 m² Wohngebäude mit Büroeinheit

Baujahr: 2011

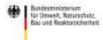

Endenergieüberschuss:

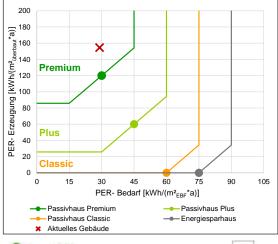
Planung: 12.239 kWh/a
1. Messjahr: 11.710 kWh/a
2. Messjahr: 13.399 kWh/a

Battery 11 kWh Charging station

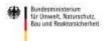
Brine to water heat pump Efficient household applinces

Quelle: Andreas Miller

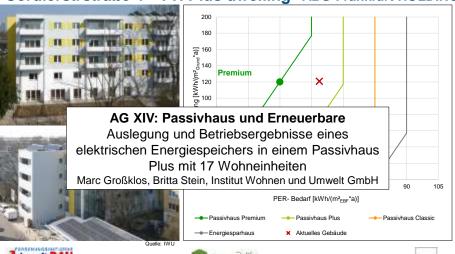




MüPEG - PH Premium dwelling - Architect Andreas Miller



Zukunft BAU


Pho F. Dvieroz una www.zebau.de

MEEBAU 31

Cordierstrstraße 4 – PH Plus dwelling - ABG Frankfurt HOLDING

Zukunft BAU

www.zebau.de

MEEBAU 32

Aktiv-Stadthaus, Frankfurt am Main

Bauherr: ABG Frankfurt HOLDING

Eckdaten: Wohnungsbau

Nettogrundfläche 6.480 m²

Technik: PV-Dach 250 kWp, Fassade 120 kWp

E-Mobil Ladestation Abwasser als Wärmequelle

3 Pufferspeiche

Lithium-Eisen-Phosphat-Speicher

Smart Home

Baujahr: 2015

Energiebilanz

Bedarf: 247.781 kWh/a

Deckung: 291.403 kWh/a (geplant)

Plus: 43.622 kWh/a

Quelle: Forschungsinitiative Zukunft Bau

Effizienzhaus Plus im Altbau, Neu-Ulm

Bauherr: NUWOG Wohnungsgesellschaft

der Stadt Neu-Ulm GmbH

Eckdaten:Zeilenhäuser

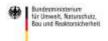
Massivbauweise

Wohnfläche (vor Sanierung) 842 m²

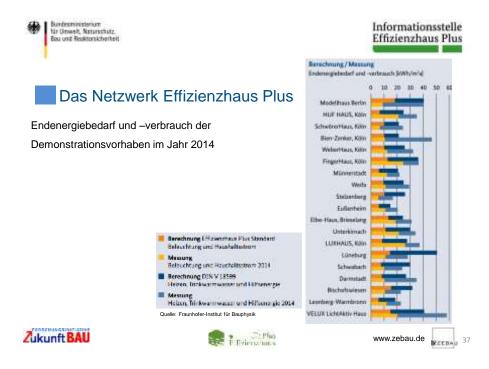
Sanierung von vier Altbauten

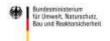
Ein 2012 von Bauministerium und NUWOG organisierter Architekturwettbewerb erbrachte zwei Preisträger; beide Entwürfe werden 2013 - 2016 umgesetzt.

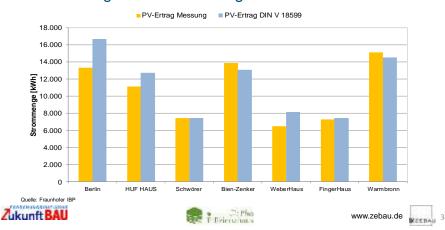
Quelle: Ruben Lang


Altbau im Effizienzhaus Plus Standard

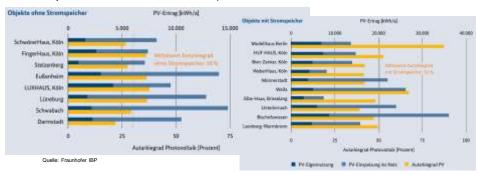
Altbau im Effizienzhaus Plus Standard


Quelle: Eibe Sönnecken, Darmstadt


Eröffnung am 2.Mai 2016

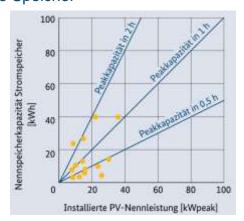


Das Netzwerk Effizienzhaus Plus Monitoring: Jahres-PV-Ertrag



Solare Stromerzeugung

Eigennutzung, Einspeisung und Autarkiegrad des Photovoltaik-Stroms für das Jahr 2014 für Projekte ohne und mit elektrischem Speicher

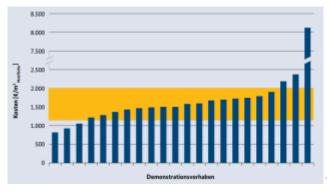


Elektrische Speicher

Speicherkapazität

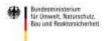
Zukunft BAU

Quelle: Fraunhofer IBP



Kosten im Effizienzhaus Plus Standard

Bruttokosten für Kostengruppen KG 300 und KG 400 der Demonstrationsvorhaben


Quelle: Fraunhofer

www.zebau.de

Das Netzwerk Effizienzhaus Plus Zusammenfassung

- Vielfalt an Gebäudetypen und technischen Konzepten
- Heizwärmebedarf von durchschnittlich 25 kWh/m²a
- Vorrangiges Konzept: Flächenheizung kombiniert mit Wärmepumpe
- Energieerzeugung in der Regel über Photovoltaik (PV); durchschnittlich 0,5 m² PV je m² Wohnfläche
- Zur Steigerung des Eigennutzungsgrads des erzeugten Stroms, Nutzung von Hausbatterien und/oder Elektromobilität
- Fast alle Häuser erreichen das Plus, jedoch mit Tendenz zu höherem Energieverbrauch
- Hohe Nutzerzufriedenheit

Quelle: detail

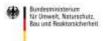
KfW-Effizienzhaus 40 PLUS

→ Stromerzeugende Anlage auf Basis erneuerbarer Energien

Mindestertrag: 500 kWh/WE + 10 kWh x AN

→ Stationäres Batteriespeichersystem (Stromspeicher)

Nutzbare Speicherkapazität: PV-Peakleistung oder/und Leistung Windkraftanlage * 1 h


- → Lüftungsanlage mit Wärmerückgewinnung: ≥ 80%
- → Visualisierung von Stromerzeugung und Stromverbrauch

Energieeffizient Bauen: KfW-Effizienzhaus-Standards

Neuerungen: Förderstufen und Konditionen ab 01.04.2016

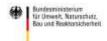
NEU: 20-jährige Zinsbindung – Vereinfachung insbesondere für das KfW-Effizienzhaus 55 (Max. 50% der förderfähigen Kosten)

Vorgagebene LJ-Werto für Gebäudehläle, Malfinahmenpakeite für Anlagentagtinis
 Stand 01 04 2016 bei 20 Jahren Laufzeit, 10 Jahre Zinsbrudung und 3 Tilgungsheijahren, max. 100,000 Euro je Wohnesstad.

itzer, 10 Jane Criscotting and 3 Ligungsteysheet, mail. 100,000 Euro je Mothesi

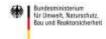
Exkurs: Erkenntnisse und Erfahrungen aus Hamburg

- Je größer und höher das Gebäude, desto schwieriger die Umsetzung
 → Bilanzgrenze Grundstück
- Unterschied ob Eigentum oder Mietwohnungsbau
- Städtebauliche Auflagen erschweren das Konzept
 Gestaltungsvorgaben (Backstein), Auflagen (Gründach)



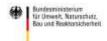
KfW-Effizienzhaus 40 PLUS und IFB Niedrigstenergiehaus oder IFB Effizienzhaus-Plus

Eigenheim


...kann durch die Förderprogramme eine gute Kombination werden, wenn die Förderung der Hamburgischen Investitions- und Förderbank (IFB) im Rahmen der sozialen Wohnraumförderung genutzt werden kann:

IFB NEH: 130,-- Euro/m² x 130m² WFL = **16.900,--**IFB EHP: 140,-- Euro/m² x 130m² WFL = **18.200,--**

Vom Wohn- zum Nichtwohnungsbau: Förderprogramm Bildungsbauten im Effizienzhaus Plus Standard


Kindertagestätte Wustrow

Neues Förderprogramm: Bildungsbauten im Effizienzhaus Plus-Ansatz

- Laufzeit der Förderrichtlinie: 2015 2018
- Projektskizzen können laufend eingereicht werden
- Die Bearbeitung erfolgt nach Eingang und Eignung
- · Folgende Zeitschiene wird angestrebt:
 - · Bis Mitte 2016: Festlegung der Projekte
 - · Ab 2016: Start des Monitorings
 - · 2018: Ergebnisse der Querauswertung

Informationsstelle Effizienzhaus Plus ZEBAU GmbH Große Elbstraße 146 22767 Hamburg

Kontakt

Karla Müller, M.Sc. (eng.) Dipl.-Ing. Arch. Britt Keßling, M.Eng.

#ImEffizienzhaus

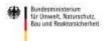
Tel.: +49 (0)40 380 384 0 Fax: +49 (0)40 380 384 29 E-Mail: effizienzhaus@zebau.de

Newsletter Effizienzhaus Plus

http://www.forschungsinitiative.de/effizienzhaus-plus/newsletter-anmeldung/

Weitere Informationen im Internet Further information

http://www.forschungsinitiative.de/effizienzhaus-plus/ http://zebau.de/effizienzhaus-plus/



Wege zum Effizienzhaus Plus – Grundlagen und Beispiele für energieerzeugende Gebäude

Herausgeber:

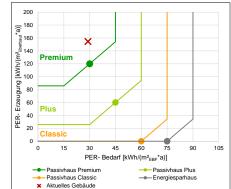
Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB), 11055 Berlin

4. Auflage, Januar 2016

Zu erhalten über: http://www.bmub.bund.de/N51310/

Vielen Dank!

Dipl.-Ing. Architekt


Lars Beckmannshagen

Informationsstelle Effizienzhaus Plus

Zentrum für Energie, Bauen, Architektur und Umwelt GmbH Große Elbstr. 146 22767 Hamburg www.zebau.de

Thank you!

