

Effizienzhaus Plus Ersatzneubau Hochschule Ulm

im Bundesamt für Bauwesen und Raumordnung

Projektbeschreibung

Der Ersatzneubau der Hochschule Ulm befindet sich an der Albert-Einstein-Allee, östlich des vorhandenen Hochschulgebäudes, und bildet zusammen mit diesem den neuen Hochschulcampus auf dem Oberen Eselsberg. Das Gebäude im Effizienzhaus-Plus-Standard ersetzt die Räumlichkeiten im stark sanierungsbedürftigen Objekt in der Eberhardt-Finck-Straße in Ulm-Böfingen.

Das Gebäude dient der Lehre und Forschung mehrerer Institute der Hochschule Ulm und enthält Laborräume sowie Büro-, Besprechungs- und Seminarbereiche. Mit dem Effizienzhaus Plus Standard erfüllt das Gebäude den Vorgaben des Landes Baden-Württemberg, das seinen Gebäudebestand bis 2050 klimaneutral gestalten will.

Allgemeine Daten

Standort:	Albert-Einstein-Allee 53, 89081 Ulm	
Baujahr:	2018 – 2020	
Bauherr:	Land Baden-Württemberg vertreten durch	
	Vermögen und Bau Baden-Württemberg, Amt Ulm, Mähringer Weg 148, 89075 Ulm, www.vermoegenundbau-bw.de	
Architekt:	Entwurfsplanung (LPH 1-4): Vermögen und Bau Baden Württemberg, Amt Ulm;	
	Ausführungsplanung (LPH 5-8): Spreen Architekten, Sommerstraße 36, 81543 München, www.spreen-architekten.de	
	Baudurchführung (LPH6-8): Sterr-Ludwig Planer GmbH, Arnegger Straße 1, 89134 Blaustein für Spreen Architekten, www.sterr-ludwig.de	
Monitoring:	Fraunhofer IBP Holzkirchen, Abteilung EER, Fraunhoferstr. 10,	
	83626 Valley. www.ibp.fraunhofer.de	
Energiekonzept:	ee concept, Spreestraße 3, 64295 Darmstadt, www.ee-concept.de	
	Planungsgruppe M+M AG, 71034 Böblingen, www.pgmm.com, mit fachlicher Unterstützung von	
	Vermögen und Bau BW, Amt Ulm und Hochschule Ulm	
Ansprechpartner:	Herr Matthias Binder, matthias.binder@vbv.bwl.de	
Kosten für die Realisierung:		
Kostengruppe 300:	21,9 Mio. €	
Kostengruppe 400:	11,5 Mio. €	

Kennzahlen

prognostizierter Überschuss:	= 71.927 kWh/a
prognostizierter Endenergie-Bedarf:	-651.272 kWh/a
prognostizierter Endenergie-Ertrag:	723.199 kWh/a
Hüllflächenfaktor A/V:	0,25 m ⁻¹
Beheiztes Gebäudevolumen:	48.661 m³
Beheizte Nettogrundfläche:	10.114 m²
Bruttogrundfläche:	11.291 m²

Lage

Breitengrad:	48,40 °N
Längengrad:	9,98 °O
Höhenlage:	478 m über NN
Mittlere Jahrestemperatur:	8,9 °C
Mittlere Wintertemperatur (Oktober – April):	4,3 °C
TRY - Klimazone / Referenzstation:	Klimazone TRY 13, Passau

Architektur

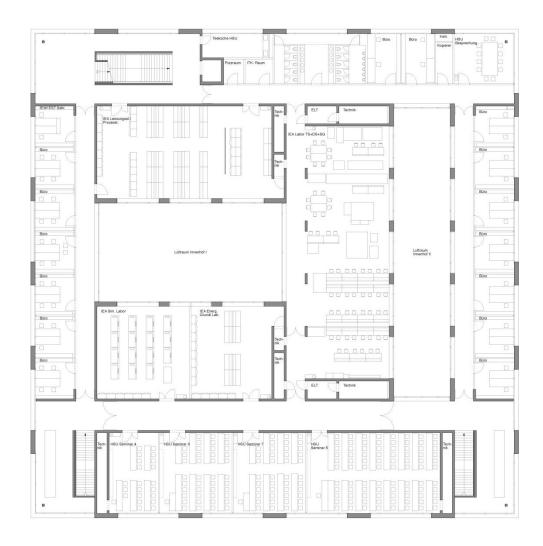
Der Neubau ist ein kompaktes, quadratisches, viergeschossiges Gebäude und wurde neben dem bestehenden Hochschulgebäude errichtet. Durch den gemeinsamen Freibereich werden die beiden Gebäude zu einem Komplex verbunden.

Das Gebäude wirkt durch seine klare Struktur. Die beiden unterschiedlich geformten Innenhöfe sorgen im Inneren für Transparenz und führen optisch die Geschosse zusammen.

Um die beiden Innenhöfe, die für Belichtung und Belüftung sorgen, gruppieren sich Laborflächen. Weiter um diesen Kern herum sind Büro- und Seminarbereiche angeordnet, mit Aussicht auf die Albert-Einstein-Allee und den angrenzenden Naturraum. Sonderlabore und Werkstätten liegen im Untergeschoss an der Ostseite.

Im Bereich des Haupteingangs ist eine variable Nutzung vorgesehen. Das Foyer wird als Veranstaltungsraum genutzt – es orientiert sich zum westlichen Innenhof und lässt sich um diese Außenfläche erweitern. Gleichzeitig dient die Foyerfläche im Alltagsbetrieb als Hauptmeetingpoint und studentischer Arbeitsraum.

Ein Teilbereich des Flachdaches oberhalb der Laborbereiche wird als Versuchsfläche für die Hochschule ausgebaut. Die übrigen Bereiche des Daches werden vollständig zur Energiegewinnung mittels Photovoltaik genutzt.


Lageplan

Grundrisse

Grundriss Erdgeschoss

Grundriss Obergeschoss

Bauteile

Das kompakte Gebäude ist ein Massivbau mit Betondecken und Wandscheiben aus Stahlbeton in Form von Betonhalbfertigteilen. Eine luftdichte Ausführung der Gebäudehülle und eine wärmebrückenarme Detailausbildung wurden angestrebt.

Die Außenwände bestehen aus Stahlbeton-Halbfertigteilen als tragende Elemente und werden mit einer Vorsatzschale, die eine 190 mm dicke Wärmedämmschicht enthält, versehen. Der U-Wert der Konstruktion beträgt 0,18 W/(m²K).

Die Holz-Fenster sind mit einer 3-fach-Sonnenschutzverglasung versehen. Der U_w -Wert des Fensters liegt bei 0,80 W/(m²K). Alle Fenster besitzen einen außenliegenden Sonnenschutz.

Das Dach ist als Flachdach ausgebildet, auf dem eine aufgeständerte Photovoltaikanlage angeordnet ist. Auf der obersten massiven Geschossdecke sind eine Dampfsperre und eine 280 mm dicke Wärmedämmung aufgebracht, auf der eine Dachabdichtung verlegt ist. Der U-Wert des Daches beträgt 0,14 W/(m²K).

Die 600 mm dicke Bodenplatte liegt auf einer 400 mm dicken Schaumglasschotterschicht auf und hat eine Abdichtung und einen schwimmenden Estrich mit einer 60 mm dicken Wärme- und 20 mm dicken Trittschalldämmung. Auf den Estrich ist in den Seminar- und Büroräumen eine Oberflächenbeschichtung aufgebracht. Der U-Wert der Bodenplatte beträgt 0,27 W/(m²K).

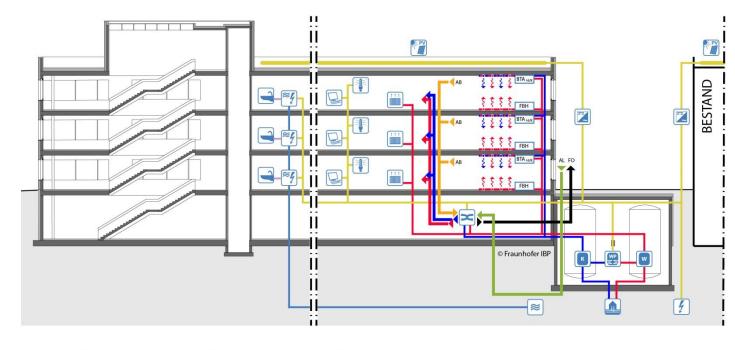
Aufbau der Bauteile der Gebäudehülle und ihre U-Werte

Bauteil	Aufbau/Material	Dicke [mm]	U-Wert [W/(m²K)]
	Stahlbeton	70	_
	Ortbeton	180	- 0.10
Außenwand	Wärmedämmung (EPS) (WLG 032)	190	0,18
(von innen nach außen)	Sichtbeton	60	
Fenster	Holz-Fenster mit 3-fach- Sonnenschutzverglasung (g = 0,35)	-	0,80
	Kies und aufgeständerte PV-Anlage	-	
	Schutzlage	-	<u></u>
Dach	Dachabdichtung	10	- 011
(von oben nach unten)	Wärmedämmung (EPS) (WLG 040)	280	0,14
(voir oberrhach unteri)	Dampfsperre	5	<u></u>
	Hohlkörperdecke aus Stahlbeton	450	
	Oberflächenbeschichtung	5	
Bodenplatte	Zementestrich	65	
(von oben nach unten)	Trittschalldämmung (WLG 040)	20	
(Wärmedämmung (PUR) (WLG 025)	60	0.07
	Abdichtung	4	0,27
	Bodenplatte aus Stahlbeton	600	
	Schaumglasschotter	400	
	$(\lambda = 0.11 \text{ W/(mK)})$		

Anlagentechnik

Das Gebäude wird über eine reversible Wasser-Wasser-Wärmepumpe beheizt bzw. gekühlt. Im Heizbetrieb beträgt die maximale Leistung der Anlage 145 kW, im Kühlbetrieb 85 kW. Durch die Nutzung des bereits auf dem Campusgelände vorhandenen weitläufigen Fernkältenetzes als Wärmequelle reduziert sich der Endenergiebedarf des Gebäudes auf ein Minimum. Strategie dabei ist es, die bei der Wärmeerzeugung anfallende Kälteenergie dem Fernkältenetz als Nutzenergie zuzuführen. Diese Entlastung des Fernkältenetzes wird dem Gebäude gutgeschrieben und als Energieeinspeisung bei der Effizienzhaus Plus Bilanzierung betrachtet.

Zur Betriebsoptimierung der Anlage ist heizungs- und kälteseitig je ein Pufferspeicher mit 50 m³ installiert. Die Spitzenlast deckt der Fernwärmeanschluss ab. Die Wärme- übertragung erfolgt mittels Bauteilaktivierung, Fußbodenheizung, Heizkörpern und in den Seminar- und Laborbereichen über die erforderliche Lüftungsanlage.


Das Trinkwarmwasser für die Sanitärbereiche und Teeküchen wird dezentral mit Elektro-Durchlauferhitzern bereitet.

Die Seminar- und Schulungsräume sowie die Technik- und Nebenräume werden über je eine Lüftungsanlage mit Frischluft versorgt. Die Außenluftansaugung erfolgt über einen begehbaren Bodenkanal, der gleichzeitig zur Vorkonditionierung der Außenluft dient. Zur Wärmerückgewinnung sind beide Anlagen mit einem hocheffizienten

Kreislaufverbundsystem ausgerüstet. Im Heizfall wird die Luft auf einen konstanten Wert vorgeheizt. Die Anlage für Seminar- und Schulungsräume erhält zusätzlich zur Kühlung der Außenluft im Sommer eine adiabate Fortluftkühlung, die die Grundkühllast der Räume abdeckt. Die Regelung der Zuluftmenge erfolgt bedarfsgerecht, abhängig vom CO₂ Gehalt der Luft. Die restlichen Räume werden natürlich be- und entlüftet.

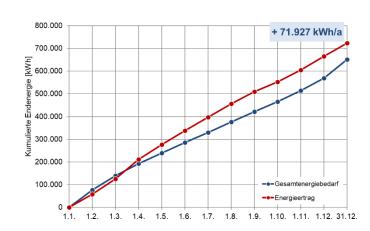
Zur Deckung des Endenergiebedarfs des Gebäudes werden etwa 2.000 m² PV-Module auf dem Neubau sowie auf Bestandsgebäude installiert. Die Gesamtleistung der Anlage beträgt ca. 411 kW_p, der dadurch zu erwartende Ertrag wird mit rund 400.000 kWh/a prognostiziert.

Konzeption der Haustechnik

Wärmepumpe

Endenergiebedarf und Deckung

Bedarf


Komponente	Energiebedarf		
	[kWh/a]	[kWh/(m²a)]*1	
Heizung (Fernwärme)	60.588	6,0	
Heizung, Warm- wasser (Strom)	101.876	10,1	
Kühlung (Fernkälte)	112.719	11,1	
Kühlung (Strom)	25.453	2,5	
Hilfsenergie für Heizung, Kühlung Warmwasser, Lüftung (Strom)	139.787	13,8	
Beleuchtung (Strom)	49.059	4,9	
Nutzerstrom (Strom)	161.820	16,0	

Deckung

Komponente	Energieertrag	
	[kWh/a]	[kWh/(m²a)]
PV-Dach	402.043* ³ (219.519* ⁴)	198,6* ² (108,5* ²)
Kälteeinspeisung	321.156	31,8*1

^{*2)} bezogen auf die PV-Modulfläche 2.024 m²

/ Luca Lilia Mta	Endenergie
· tallialloi to	

^{*1)} bezogen auf die beheizte Nettogrundfläche 10.114 m²

651.272 kWh/a

Gesamt 723.199 kWh/a

Primärenergiebedarf der erforderlichen Energieträger und Primärenergiegutschrift

Energiebezug von außerhalb

Komponente	Primärenergiebedarf	
	[kWh/a]* ⁵	[kWh/(m²a)]* ¹
Nahwärme nach EnEV	14.534	1,4
Fernkälte nach EnEV	46.215	4,6
Strombedarf nach EnEV	190.628	18,8
Nutzerstrom Effizienzhaus Plus	141.697	14,0

^{*1)} bezogen auf die beheizte Nettogrundfläche 10.114 m²

Gesamt 393.073 kWh/a

Gutschrift durch Einspeisung

Komponente	Stromüberschuss	
	[kWh/a]* ⁶	[kWh/(m²a)]
PV-Dach	304.282	150,3*2
Kälteeinspeisung	131.674	13,0*1

^{*2)} bezogen auf die PV-Modulfläche 2.024 m²

Gesamt 435.956 kWh/a

^{*3)} gemäß PV-Simulation am Standort Ulm

^{*4)} nach DIN V 18599 mit Standardwerten und Referenzklima Potsdam

^{*5)} vom PV-Ertrag werden 73 % im Gebäude selbst genutzt und mindern so den Bezug aus dem öffentlichen Netz

^{*6)} vom PV-Ertrag werden 28 % in das öffentliche Netz eingespeist

Wichtige Links für Forschung und Förderung

Bundesministerium des Innern, für Bau und Heimat www.bmi.bund.de

Bundesamt für Bauwesen und Raumordnung www.bbr.bund.de

Innovationsprogramm "Zukunft Bau" www.zukunftbau.de

Fraunhofer-Institut für Bauphysik, Abteilung Energieeffizienz und Raumklima www.ibp.fraunhofer.de/eer

KfW Bankengruppe www.kfw.de

Impressum

Herausgeber

Bundesministerium des Innern, für Bau und Heimat Krausenstraße 17-20 10117 Berlin

Ansprechpartner / Projektleitung

Dipl.-Ing. Architektin Petra Alten Bundesministerium des Innern, für Bau und Heimat Krausenstraße 17-20 10117 Berlin

Stand Energiekennzahlen

Januar 2022

Verfasser und Gestaltung

Antje Bergmann, Hans Erhorn, Irmgard Haug, Jessica Preuss Fraunhofer-Institut für Bauphysik Nobelstraße 12 70569 Stuttgart

Titelbild

Ersatzneubau Hochschule Ulm (Quelle: Spreen Architekten, München)

Abbildungsnachweis

Lageplan: Köber Landschaftsarchitektur, Stuttgart; Grundrisse und Schnitte: Spreen Architekten, München; Grafik Haustechnik: Fraunhofer-Institut für Bauphysik, Abteilung Energieeffizienz und Raumklima www.ibp.fraunhofer.de/eer